BIPOLAR ANALOG INTEGRATED CIRCUIT μ PC8182TB

3 V, 2.9 GHz SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER FOR MOBILE COMMUNICATIONS

DESCRIPTION

The $\mu \mathrm{PC} 8182 \mathrm{~TB}$ is a silicon monolithic integrated circuit designed as amplifier for mobile communications. This IC operates at 3 V . The medium output power is suitable for RF-TX of mobile communications system.

This IC is manufactured using our $30 \mathrm{GHz} \mathrm{f}_{\max }$ UHSO (Ultra High Speed Process) silicon bipolar process. This process uses direct silicon nitride passivation film and gold electrodes. These materials can protect the chip surface from pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

- Supply voltage: Vcc = 2.7 to 3.3 V
- Circuit current: Icc = 30 mA TYP. @ Vcc $=3.0 \mathrm{~V}$
- Medium output power: $\mathrm{Po}_{(1 \mathrm{~dB})}=+9.5 \mathrm{dBm}$ TYP. @ $\mathrm{f}=0.9 \mathrm{GHz}$

$$
\begin{aligned}
& \mathrm{Po}(1 \mathrm{~dB})=+9.0 \mathrm{dBm} \text { TYP. @ } \mathrm{f}=1.9 \mathrm{GHz} \\
& \mathrm{Po}(1 \mathrm{~dB})=+8.0 \mathrm{dBm} \text { TYP. @ } \mathrm{f}=2.4 \mathrm{GHz}
\end{aligned}
$$

- Power gain: $\mathrm{Gp}=21.5 \mathrm{~dB}$ TYP. @ $\mathrm{f}=0.9 \mathrm{GHz}$

$$
\begin{aligned}
& \mathrm{Gp}=20.5 \mathrm{~dB} \text { TYP. @ } \mathrm{f}=1.9 \mathrm{GHz} \\
& \mathrm{Gp}=20.5 \mathrm{~dB} \text { TYP. } @ \mathrm{f}=2.4 \mathrm{GHz}
\end{aligned}
$$

- Upper limit operating frequency: fu = 2.9 GHz TYP. @ 3 dB bandwidth
- High-density surface mounting: 6-pin super minimold package ($2.0 \times 1.25 \times 0.9 \mathrm{~mm}$)

APPLICAION

- Buffer amplifiers on 1.9 to 2.4 GHz mobile communications system

ORDERING INFORMATION (Solder Contains Lead)

Part Number	Package	Marking	Supplying Form
μ PC8182TB-E3	6-pin super minimold	C3F	•Embossed tape 8 mm wide
			• Pin 1, 2, 3 face the perforation side of the tape
		Qty $3 \mathrm{kpcs} /$ reel	

Remark To order evaluation samples, contact you're nearby sales office. Part number for sample order: μ PC8182TB

ORDERING INFORMATION (Pb-Free)

Part Number	Package	Marking	Supplying Form
μ PC8182TB-E3-AZ*	6-pin super minimold	C3F	•Embossed tape 8 mm wide
		Pin 1, 2, 3 face the perforation side of the tape 	

*NOTE: Please refer to the last page of this data sheet, "Compliance with EU Directives" for Pb-Free RoHS Compliance Information.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTIONS

PRODUCT LINE-UP ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=\mathrm{V}_{\mathrm{out}}=3.0 \mathrm{~V}, \mathrm{Zs}=\mathrm{ZL}=50 \Omega$)

Part No.	$\begin{gathered} \mathrm{fu} \\ (\mathrm{GHz}) \end{gathered}$	Po (1dB) (dBm)	Gp (dB)	$\begin{aligned} & \text { Icc } \\ & (\mathrm{mA}) \end{aligned}$	Package	Marking
$\mu \mathrm{PC} 8182 \mathrm{BB}$	2.9	$\begin{aligned} & +9.5 @ \mathrm{f}=0.9 \mathrm{GHz} \\ & +9.0 @ \mathrm{f}=1.9 \mathrm{GHz} \\ & +8.0 @ \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 21.5 @ \mathrm{f}=0.9 \mathrm{GHz} \\ & 20.5 @ \mathrm{f}=1.9 \mathrm{GHz} \\ & 20.5 @ \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	30.0	6-pin super minimold	C3F
$\mu \mathrm{PC} 2762 \mathrm{~T}$	2.9	$\begin{aligned} & +8.0 @ \mathrm{f}=0.9 \mathrm{GHz} \\ & +7.0 @ \mathrm{f}=1.9 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 13.0 @ \mathrm{f}=0.9 \mathrm{GHz} \\ & 15.5 @ \mathrm{f}=1.9 \mathrm{GHz} \end{aligned}$	26.5	6-pin minimold	C1Z
$\mu \mathrm{PC} 2762$ TB					6-pin super minimold	
$\mu \mathrm{PC} 2763 \mathrm{~T}$	2.7	$\begin{aligned} & +9.5 @ \mathrm{f}=0.9 \mathrm{GHz} \\ & +6.5 @ \mathrm{f}=1.9 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 20.0 @ \mathrm{f}=0.9 \mathrm{GHz} \\ & 21.0 @ \mathrm{f}=1.9 \mathrm{GHz} \end{aligned}$	27.0	6-pin minimold	C2A
$\mu \mathrm{PC} 2763$ TB					6-pin super minimold	
$\mu \mathrm{PC} 2771 \mathrm{~T}$	2.2	$\begin{aligned} & +11.5 @ \mathrm{f}=0.9 \mathrm{GHz} \\ & +9.5 @ \mathrm{f}=1.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 21.0 @ \mathrm{f}=0.9 \mathrm{GHz} \\ & 21.0 @ \mathrm{f}=1.5 \mathrm{GHz} \end{aligned}$	36.0	6-pin minimold	C 2 H
$\mu \mathrm{PC} 2771 \mathrm{BB}$					6-pin super minimold	
$\mu \mathrm{PC8181}{ }^{\text {P }}$	4.0	$\begin{aligned} & +8.0 @ \mathrm{f}=0.9 \mathrm{GHz} \\ & +7.0 @ \mathrm{f}=1.9 \mathrm{GHz} \\ & +7.0 @ \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 19.0 @ \mathrm{f}=0.9 \mathrm{GHz} \\ & 21.0 @ \mathrm{f}=1.9 \mathrm{GHz} \\ & 22.0 @ \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	23.0	6-pin super minimold	C3E

Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.
Caution The package size distinguishes between minimold and super minimold.

SYSTEM APPLICATION EXAMPLE

Digital cellular telephone

Caution The insertion point is different due to the specifications of conjunct devices.

PIN EXPLANATION

Note Pin voltage is measured at $\mathrm{Vcc}=3.0 \mathrm{~V}$.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	$\mathrm{Vcc}_{\mathrm{cc}}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, pin 4 and pin 6	3.6	V
Total Circuit Current	Icc	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Note	60
Power Dissipation	PD_{D}	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	270	mA
Operating Ambient Temperature	T_{A}		-40 to +85	mW
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Input Power	Pin	$\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	+10	dBm

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass PWB

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
Supply Voltage	Vcc^{\prime}	2.7	3.0	3.3	V	Same voltage should be applied to pin 4 and pin 6.
Operating Ambient Temperature	T_{A}	-40	+25	+85	${ }^{\circ} \mathrm{C}$	-

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=\mathrm{V}_{\mathrm{out}}=3.0 \mathrm{~V}, \mathrm{Zs}=\mathrm{Z} \mathrm{L}=50 \Omega\right.$, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No signal	-	30.0	38.0	mA
Power Gain	Gp	$\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 19.0 \\ & 18.0 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 20.5 \\ & 20.5 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 24.0 \\ & 24.0 \end{aligned}$	dB
Noise Figure	NF	$\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 6.5 \end{aligned}$	dB
Upper Limit Operating Frequency	fu	3 dB down below from gain at $\mathrm{f}=0.1 \mathrm{GHz}$	2.6	2.9	-	GHz
Isolation	ISL	$\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 28 \\ & 27 \\ & 26 \end{aligned}$	$\begin{aligned} & 33 \\ & 32 \\ & 31 \end{aligned}$		dB
Input Return Loss	RLin	$\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \\ & 9 \end{aligned}$	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$		dB
Output Return Loss	RLout	$\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 7 \\ 8 \\ 11 \end{gathered}$	$\begin{aligned} & 10 \\ & 11 \\ & 14 \end{aligned}$		dB
Gain 1 dB Compression Output Power	$\mathrm{Po}(1 \mathrm{~dB})$	$\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +7.0 \\ & +6.5 \\ & +5.5 \end{aligned}$	$\begin{aligned} & +9.5 \\ & +9.0 \\ & +8.0 \end{aligned}$		dBm
Saturated Output Power	Po (sat)	$\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz}, P_{\mathrm{in}}=-5 \mathrm{dBm} \\ & \mathrm{f}=1.9 \mathrm{GHz}, P_{\mathrm{in}}=-5 \mathrm{dBm} \\ & \mathrm{f}=2.4 \mathrm{GHz}, P_{\mathrm{in}}=-5 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & +11.0 \\ & +10.5 \\ & +10.0 \end{aligned}$		dBm

TEST CIRCUITS

COMPONENTS OF TEST CIRCUIT
EXAMPLE OF ACTUAL APPLICATION COMPONENTS FOR MEASURING ELECTRICAL
CHARACTERISTICS

	Type	Value
$\mathrm{C}_{1}, \mathrm{C}_{2}$	Bias Tee	1000 pF
C_{3}	Capacitor	1000 pF
L	Bias Tee	1000 nH

	Type	Value	Operating Frequency
C_{1} to C_{3}	Chip capacitor	1000 pF	100 MHz or higher
L	Chip inductor	100 nH	100 MHz or higher
		10 nH	2.0 GHz or higher

INDUCTOR FOR THE OUTPUT PIN

The internal output transistor of this IC consumes 20 mA , to output medium power. To supply current for output transistor, connect an inductor between the Vcc pin (pin 6) and output pin (pin 4). Select large value inductance, as listed above.

The inductor has both DC and AC effects. In terms of DC, the inductor biases the output transistor with minimum voltage drop to output enable high level. In terms of AC, the inductor makes output-port-impedance higher to get enough gain. In this case, large inductance and Q is suitable.

For above reason, select an inductance of 100Ω or over impedance in the operating frequency. The gain is a peak in the operating frequency band, and suppressed at lower frequencies.

The recommendable inductance can be chosen from example of actual application components list as shown above.

CAPACITORS FOR THE VCC, INPUT, AND OUTPUT PINS

Capacitors of 1000 pF are recommendable as the bypass capacitor for the Vcc pin and the coupling capacitors for the input and output pins.

The bypass capacitor connected to the Vcc pin is used to minimize ground impedance of Vcc pin. So, stable bias can be supplied against Vcc fluctuation.

The coupling capacitors, connected to the input and output pins, are used to cut the DC and minimize RF serial impedance. Their capacitance are therefore selected as lower impedance against a 50Ω load. The capacitors thus perform as high pass filters, suppressing low frequencies to DC.

To obtain a flat gain from 100 MHz upwards, 1000 pF capacitors are used in the test circuit. In the case of under 10 MHz operation, increase the value of coupling capacitor such as 10000 pF . Because the coupling capacitors are determined by equation, $C=1 /(2 \pi R f c)$.

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

COMPONENT LIST

	Value
C	1000 pF
L	Example: 10 nH

TYPICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified)

CIRCUIT CURRENT vs. SUPPLY VOLTAGE

NOISE FIGURE, POWER GAIN vs. FREQUENCY

ISOLATION vs. FREQUENCY

CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE

POWER GAIN vs. FREQUENCY

INPUT RETURN LOSS, OUTPUT RETURN LOSS vs. FREQUENCY

OUTPUT POWER vs. INPUT POWER

3RD ORDER INTERMODULATION DISTORTION © vs. OUTPUT POWER OF EACH TONE

3RD ORDER INTERMODULATION DISTORTION

3RD ORDER INTERMODULATION DISTORTION

Remark The graphs indicate nominal characteristics.

SMITH CHART (Vcc = Vout = 3.0 V)

S11-FREQUENCY

S22-FREQUENCY

* S-PARAMETERS

S-parameters/Noise parameters are provided on the NEC Compound Semiconductor Devices Web site in a form (S2P) that enables direct import to a microwave circuit simulator without keyboard input.

Click here to download S-parameters.
[RF and Microwave] \rightarrow [Device Parameters]
URL http://www.csd-nec.com/

PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT: mm)

NOTES ON CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor should be attached to the Vcc pin.
(4) The inductor must be attached between Vcc and output pins. The inductance value should be determined in accordance with desired frequency.
(5) The DC cut capacitor must be attached to input and output pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method		Soldering Conditions	
Infrared Reflow	Peak temperature (package surface temperature)	$: 260^{\circ} \mathrm{C}$ or below	Condition Symbol
	Time at peak temperature	$: 10$ seconds or less	
	Time at temperature of $220^{\circ} \mathrm{C}$ or higher	$: 60$ seconds or less	
	Preheating time at 120 to $180^{\circ} \mathrm{C}$	$: 120 \pm 30$ seconds	
	Maximum number of reflow processes	$: 3$ times	$: 0.2 \%$ (Wt.) or below

Caution Do not use different soldering methods together (except for partial heating).

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	<1000 PPM	-A	-AZ
Mercury	<1000 PPM	Not Detected	(*)
Cadmium	<100 PPM	Not Detected	
Hexavalent Chromium	<1000 PPM	Not Detected	
PBB	<1000 PPM	Not Detected	
PBDE	<1000 PPM	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.
See CEL Terms and Conditions for additional clarification of warranties and liability.

