NSL12AW

High Current Surface Mount PNP Silicon Low V_{CE(sat)} Transistor for Battery Operated Applications

Features:

- High Current Capability (3 A)
- High Power Handling (Up to 650 mW)
- Low V_{CE(s)} (170 mV Typical @ 1 A)
- Small Size

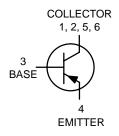
Benefits:

- High Specific Current and Power Capability Reduces Required PCB Area
- Reduced Parasitic Losses Increases Battery Life

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	-12	Vdc
Collector-Base Voltage	V_{CBO}	-12	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous – Peak	I _C I _{CM}	-2.0 -3.0	Adc
Electrostatic Discharge	ESD	HBM Class 3 MM Class C	

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation T _A = 25°C	P _D (Note 1)	450	mW
Derate above 25°C		3.6	mW/°C
Thermal Resistance, Junction to Ambient	R _{θJA} (Note 1)	275	°C/W
Total Device Dissipation T _A = 25°C	P _D (Note 2)	650	mW
Derate above 25°C		5.2	mW/°C
Thermal Resistance, Junction to Ambient	R _{θJA} (Note 2)	192	°C/W
Thermal Resistance, Junction to Lead 6	R _{θJL}	105	°C/W
Total Device Dissipation (Single Pulse < 10 sec.)	P _D Single	1.4	W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C

- 1. FR-4, Minimum Pad, 1 oz Coverage
- 2. FR-4, 1" Pad, 1 oz Coverage

http://onsemi.com

12 VOLTS 3.0 AMPS PNP TRANSISTOR

CASE 419B SOT-363/SC-88 STYLE 20

DEVICE MARKING

11 = Specific Device Coded = Date Code

ORDERING INFORMATION

Device	Package	Shipping
NSL12AWT1	SOT-416	3000/Tape & Reel

NSL12AW

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Typical	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = –10 mAdc, I _B = 0)	V _(BR) CEO	-12	-15	_	Vdc
Collector–Base Breakdown Voltage (I _C = -0.1 mAdc, I _E = 0)	V _(BR) CBO	-12	-25	-	Vdc
Emitter–Base Breakdown Voltage (I _E = -0.1 mAdc, I _C = 0)	V _{(BR)EBO}	-5.0	-7.0	-	Vdc
Collector Cutoff Current $(V_{CB} = -12 \text{ Vdc}, I_E = 0)$	I _{CBO}	-	-0.02	-0.1	μAdc
Collector–Emitter Cutoff Current (V _{CES} = -12 Vdc, I _E = 0)	I _{CES}	-	-0.03	-0.1	μAdc
Emitter Cutoff Current (V _{CES} = -5.0 Vdc, I _E = 0)	I _{EBO}	_	-0.03	-0.1	μAdc
ON CHARACTERISTICS					
DC Current Gain (Note 3) ($I_C = -0.5 \text{ A}, V_{CE} = -1.5 \text{ V}$) ($I_C = -0.8 \text{ A}, V_{CE} = -1.5 \text{ V}$) ($I_C = -1.0 \text{ A}, V_{CE} = -1.5 \text{ V}$)	h _{FE}	100 100 100	180 165 160	- 300 -	
Collector–Emitter Saturation Voltage (Note 3) $ \begin{array}{l} (I_C=-0.5~A,~I_B=-10~\text{mA})\\ (I_C=-0.8~A,~I_B=-16~\text{mA})\\ (I_C=-1.0~A,~I_B=-20~\text{mA}) \end{array} $	V _{CE(sat)}	- - -	-0.10 -0.14 -0.17	-0.160 -0.235 -0.290	V
Base–Emitter Saturation Voltage (Note 3) (I _C = -1.0 A, I _B = -20 mA)	V _{BE(sat)}	_	-0.84	-0.95	V
Base–Emitter Turn–on Voltage (Note 3) (I _C = -1.0 A, V _{CE} = -1.5 V)	V _{BE(on)}	_	-0.81	-0.95	V
Cutoff Frequency ($I_C = -100 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$, $f = 100 \text{ MHz}$)	f _T	_	100	_	MHz
Output Capacitance (V _{CB} = -1.5 V, f = 1.0 MHz)	C _{obo}	_	50	65	pF

^{3.} Pulsed Condition: Pulse Width < 300 μsec, Duty Cycle < 2%

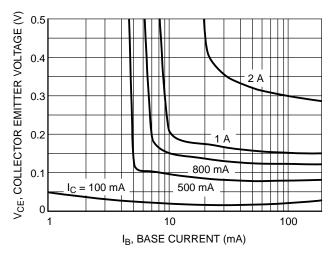


Figure 1. Collector Emitter Voltage versus

Base Current

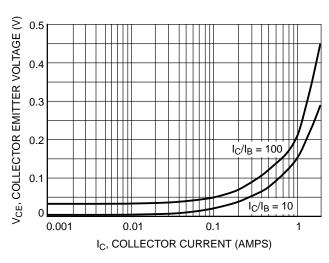


Figure 2. Collector Emitter Voltage versus
Collector Current

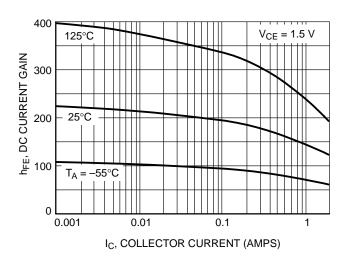


Figure 3. DC Current Gain versus Collector Current

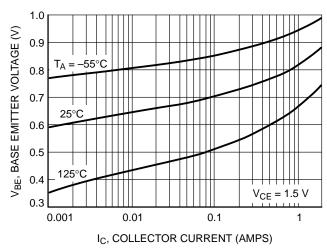


Figure 4. Base Emitter Voltage versus Collector Current

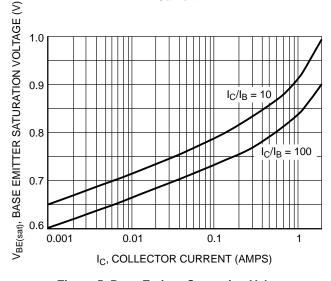


Figure 5. Base Emitter Saturation Voltage versus Base Current

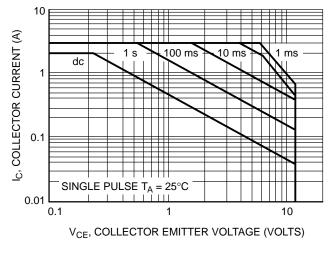


Figure 6. Safe Operating Area

NSL12AW

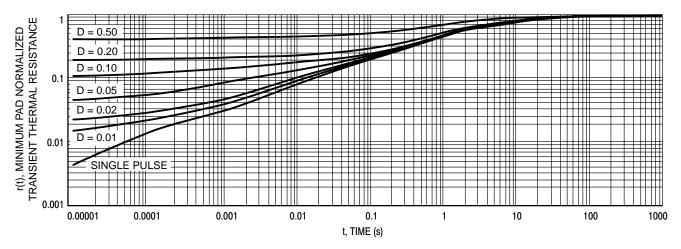
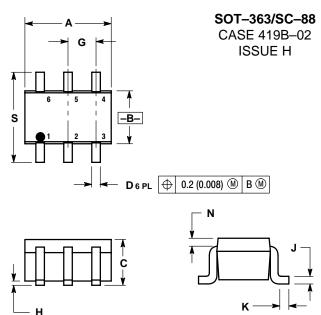



Figure 7. Normalized Thermal Response

PACKAGE DIMENSIONS

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026 BSC		0.65 BSC		
Н		0.004		0.10	
J	0.004	0.010	0.10	0.25	
K	0.004	0.012	0.10	0.30	
N	0.008 REF		0.20	0.20 REF	
S	0.079	0.087	2.00	2.20	

STYLE 20 PIN 1. COLLECTOR

2. COLLECTOR3. BASE

FMITTER

COLLECTOR

COLLECTOR

ON Semiconductor and War registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.