

Voltage Detector IC Series

Low Voltage Standard **CMOS Voltage Detector ICs**

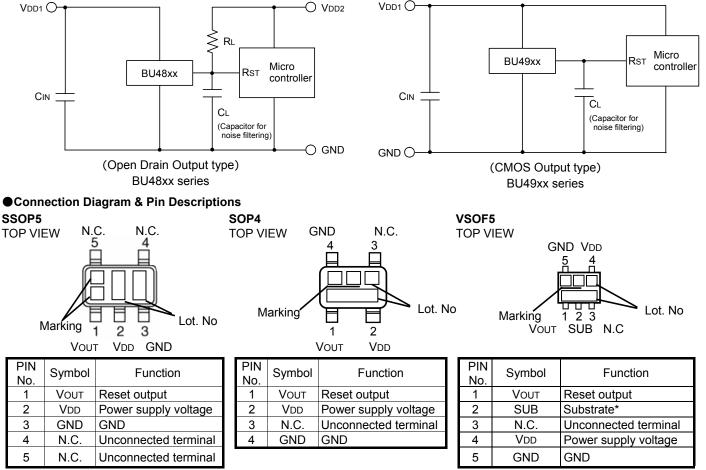
BU48xx Series BU49xx Series

General Description

ROHM standard CMOS reset IC series is a high-accuracy low current consumption reset IC series. The lineup was established with two output types (Nch open drain and CMOS output) and detection voltage range from 0.9V to 4.8V in increments of 0.1V, so that the series may be selected according to the application at hand.

Features

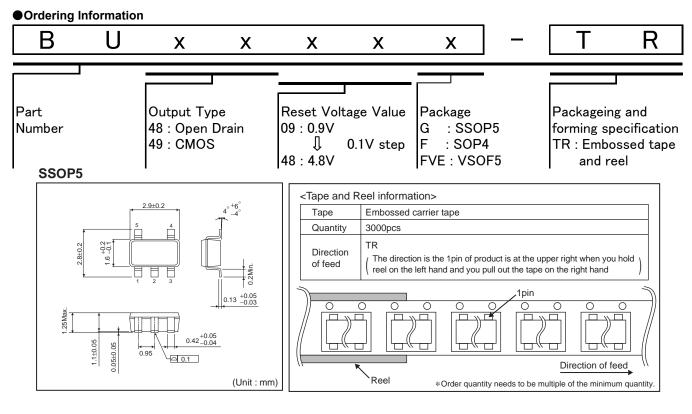
- Ultra-low voltage detection
- Ultra-low current consumption
- High accuracy detection
- Two output types (Nch open drain and CMOS output)
- Wide operating temperature range
- Very small and low height package

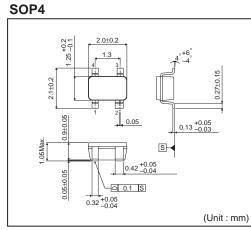

•Key Specifications

Detection voltage:		0.9V to 4.8V		
		0.1V steps		
High accuracy detection v	±1.0%			
 Ultra-low current consum 	ption:	0.55µA (Typ.)		
 Operating temperature ra 	-40°C to +125°C			
Package				
SSOP5	2.90mm	x 2.80mm x 1.15mm		
SOP4	2.00mm	x 2.10mm x 0.95mm		
VSOF5	1.60mm	x 1.60mm x 0.60mm		

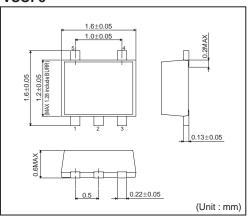
VSOF5

Applications


All electronic devices that use micro controllers and logic circuits



Connect the substrate to VDD


OProduct structure : Silicon monolithic integrated circuit OThis product is not designed protection against radioactive rays.

Typical Application Circuit

VSOF5

●Lineup

Lineu	٣										
Making	Detection	Part									
-	voltage	Number	_	voltage	Number	Making	voltage	Number	-	voltage	Number
JR	4.8V	BU4848	HV	2.8V	BU4828	LH	4.8V	BU4948	KM	2.8V	BU4928
JQ	4.7V	BU4847	HU	2.7V	BU4827	LG	4.7V	BU4947	KL	2.7V	BU4927
JP	4.6V	BU4846	HT	2.6V	BU4826	LF	4.6V	BU4946	KK	2.6V	BU4926
JN	4.5V	BU4845	HS	2.5V	BU4825	LE	4.5V	BU4945	KJ	2.5V	BU4925
JM	4.4V	BU4844	HR	2.4V	BU4824	LD	4.4V	BU4944	KH	2.4V	BU4924
JL	4.3V	BU4843	HQ	2.3V	BU4823	LC	4.3V	BU4943	KG	2.3V	BU4923
JK	4.2V	BU4842	HP	2.2V	BU4822	LB	4.2V	BU4942	KF	2.2V	BU4922
JJ	4.1V	BU4841	HN	2.1V	BU4821	LA	4.1V	BU4941	KE	2.1V	BU4921
JH	4.0V	BU4840	HM	2.0V	BU4820	KZ	4.0V	BU4940	KD	2.0V	BU4920
JG	3.9V	BU4839	HL	1.9V	BU4819	KY	3.9V	BU4939	KC	1.9V	BU4919
JF	3.8V	BU4838	HK	1.8V	BU4818	KX	3.8V	BU4938	KB	1.8V	BU4918
JE	3.7V	BU4837	HJ	1.7V	BU4817	KW	3.7V	BU4937	KA	1.7V	BU4917
JD	3.6V	BU4836	HH	1.6V	BU4816	K٧	3.6V	BU4936	JZ	1.6V	BU4916
JO	3.5V	BU4835	HG	1.5V	BU4815	KU	3.5V	BU4935	JY	1.5V	BU4915
JB	3.4V	BU4834	HF	1.4V	BU4814	KT	3.4V	BU4934	JX	1.4V	BU4914
JA	3.3V	BU4833	HE	1.3V	BU4813	KS	3.3V	BU4933	JW	1.3V	BU4913
HZ	3.2V	BU4832	HD	1.2V	BU4812	KR	3.2V	BU4932	JV	1.2V	BU4912
HY	3.1V	BU4831	HC	1.1V	BU4811	KQ	3.1V	BU4931	JU	1.1V	BU4911
HX	3.0V	BU4830	HB	1.0V	BU4810	KP	3.0V	BU4930	JT	1.0V	BU4910
HW	2.9V	BU4829	HA	0.9V	BU4809	KN	2.9V	BU4929	JS	0.9V	BU4909

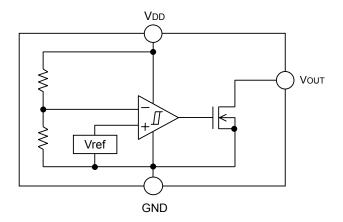
●Absolute Maximum Ratings (Ta=25°C)

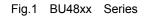
Parameter		Symbol	Limits	Unit	
Power Supply Voltage		Vdd	-0.3 to +7	V	
Output Voltage Nch Open Drain Output		Vout	GND-0.3 to +7	V	
Output Voltage	CMOS Output	0001	GND-0.3 to VDD+0.3	v	
Deurer	SSOP5 *1*4		540		
Power Dissipation	SOP4 *2*4	Pd	400	mW	
Dissipation	VSOF5 *3*4		210		
Operation Temperature Range		Topt	-40 to +125	°C	
Ambient Storage Temperature		Tstg	-55 to +125	°C	

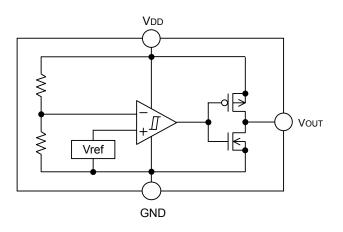
*1 When used at temperatures higher than Ta=25°C, the power is reduced by 5.4mW per 1°C above 25°C. *2 When used at temperatures higher than Ta=25°C, the power is reduced by 4.0mW per 1°C above 25°C. *3 When used at temperatures higher than Ta=25°C, the power is reduced by 2.1mW per 1°C above 25°C. *4 When a ROHM standard circuit board (70mm×70mm×1.6mm, glass epoxy board)is mounted.

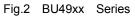
Electrical Characteristics

Parameter	Symbol	Conditio	n		Unit		
Gymbol		Conditio		Min.	Тур.	Max.	Onit
			BU4848	4.752	4.800	4.848	
			BU4847	4.653	4.700	4.747	
			BU4846	4.554	4.600	4.646	
			BU4845	4.455	4.500	4.545	
			BU4844	4.356	4.400	4.444	
			BU4843	4.257	4.300	4.343	
			BU4842	4.158	4.200	4.242	
			BU4841	4.059	4.100	4.141	
			BU4840	3.960	4.000	4.040	
			BU4839	3.861	3.900	3.939	
			BU4838	3.762	3.800	3.838	
			BU4837	3.663	3.700	3.737	
			BU4836	3.564	3.600	3.636	
			BU4835	3.465	3.500	3.535	
			BU4834	3.366	3.400	3.434	
			BU4833	3.267	3.300	3.333	
			BU4832	3.168	3.200	3.232	
			BU4831	3.069	3.100	3.131	
			BU4830	2.970	3.000	3.030	-
Detection Voltage		Vdd=H→L , Ta=25°C RL=470kΩ	BU4829	2.871	2.900	2.929	
	VDET		BU4828	2.772	2.800	2.828	V
			BU4827	2.673	2.700	2.727	
			BU4826	2.574	2.600	2.626	-
			BU4825	2.475	2.500	2.525	
			BU4824	2.376	2.400	2.424	
			BU4823	2.277	2.300	2.323	
		BU4822	2.178	2.200	2.222	-	
			BU4821	2.079	2.100	2.121	-
			BU4820	1.980	2.000	2.020	-
			BU4819	1.881	1.900	1.919	-
			BU4818	1.782	1.800	1.818	-
			BU4817	1.683	1.700	1.717	-
			BU4816	1.584	1.600	1.616	1
			BU4815	1.485	1.500	1.515	1
			BU4815 BU4814	1.386	1.400	1.414	-
			BU4813	1.287	1.300	1.313	-
			BU4812	1.188	1.200	1.212	-
			BU4812 BU4811	1.188	1.100	1.212	_
							-
			BU4810	0.990	1.000	1.010	-
Detection Voltage		$T_{0} = 40^{\circ}$ to 125° *1	BU4809	0.891	0.900	0.909	10.
Temperature Coefficient	Vdet/ΔT	Ta=-40°C to 125°C *1		-	±30	-	ppm/°0
		Vdd=L→H→L	VDET≤1.0V	VDET	VDET	VDET	V V
Hysteresis Voltage	$\Delta V \text{det}$	Ta=-40°C to 125°C		×0.03	×0.05	×0.08	
Typicrobio Voltage		RL=470kΩ	Vdet≥1.1V	VDET	VDET	VDET	
				×0.03	×0.05	×0.07	1


*1 Designed Guarantee.(Outgoing inspection is not done on all products.)


Unless Otherwise Spe	cified Ta=-25 to 125°C
----------------------	------------------------


Parameter	Symbol	Con	dition	Limit			Unit
Falameter Synt		Con	Min.	Тур.	Max.		
			VDET=0.9-1.3V	-	0.15	0.88	
			VDET=1.4-2.1V	-	0.20	1.05	
Circuit Current when ON			VDET=2.2-2.7V	-	0.25	1.23	
Circuit Current when ON	IDD1	VDD=VDET-0.2V	VDET=2.8-3.3V	-	0.30	1.40	μA
			VDET=3.4-4.2V	-	0.35	1.58	
			VDET=4.3-4.8V	-	0.40	1.75	
		VDD=VDET+2.0V	VDET=0.9-1.3V	-	0.30	1.40	μΑ
	IDD2		VDET=1.4-2.1V	-	0.35	1.58	
Circuit Current when OFF			VDET=2.2-2.7V	-	0.40	1.75	
Circuit Current when OFF			VDET=2.8-3.3V	-	0.45	1.93	
			VDET=3.4-4.2V	-	0.50	2.10	
			VDET=4.3-4.8V	-	0.55	2.28	
Operating Voltage Bange		Vo∟≤0.4V, Ta=25 to	o∟≤0.4V, Ta=25 to 125°C, R∟=470kΩ		-	-	Ň
Operating Voltage Range	Vopl	VoL≤0.4V, Ta=-40 to 25°C, RL=470kΩ		0.90	-	-	V
	Iol	VDS=0.05V VDD=0.85V		20	100	-	μA
'Low' Output Current (Nch)		VDS=0.5V VDD=1	.5V VDET=1.7-4.8V	1.0	3.3	-	
		VDS=0.5V VDD=2	.4V VDET=2.7-4.8V	4.0	7.2	-	mA
'High' Output Current (Pch) (only BU49xx)	Іон	VDS=0.5V VDD=4	.8V VDET=0.9-3.9V	1.7	3.4	-	
		VDS=0.5V VDD=6.0V VDET=4.0-4.8V		2.0	4.0	-	mA
Output Leak Current when OFF	I _{leak} Ta=-40°C to VDD=VDS=7\	VDD=VDS=7V Ta=-40°C to 85°C		-	0	0.1	μA
(only BU48xx)		Ta=85°C to 125°C		-	0	1	


* This product is not designed for protection against radioactive rays.

Block Diagrams

• Typical Performance Curves

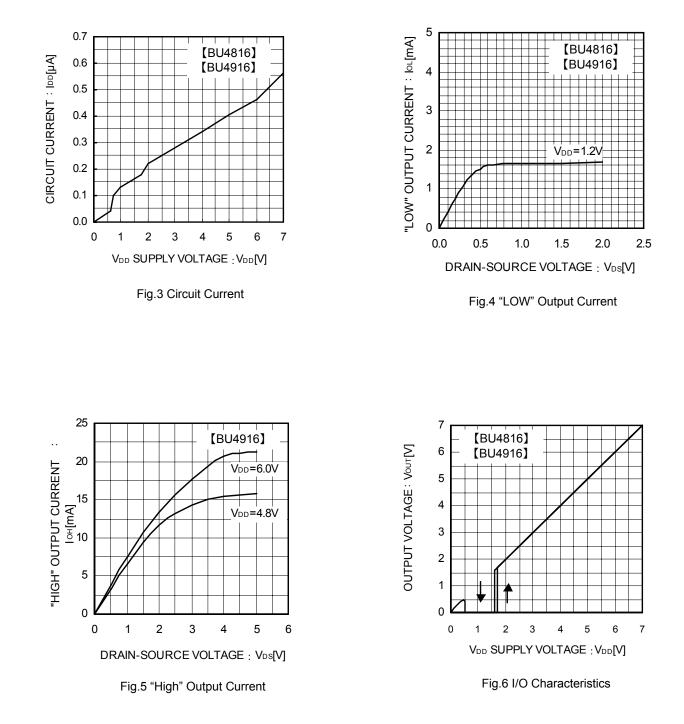
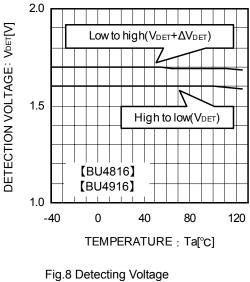



Fig.7 Operating Limit Voltage

Release Voltage

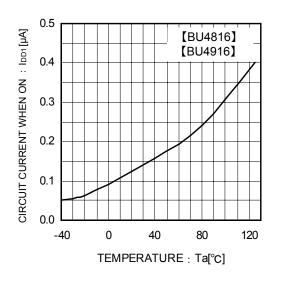


Fig.9 Circuit Current when ON

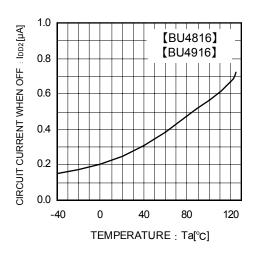


Fig.10 Circuit Current when OFF

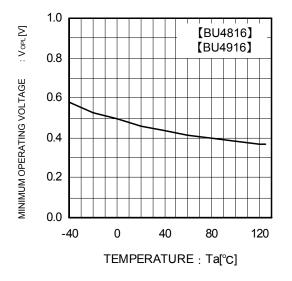


Fig.11 Operating Limit Voltage

Application Information

Explanation of Operation

For both the open drain type(Fig.12)and the CMOS output type(Fig.13), the detection and release voltages are used as threshold voltages. When the voltage applied to the VDD pins reaches the applicable threshold voltage, the VOUT terminal voltage switches from either "High" to "Low" or from "Low" to "High". Because the BU48xx series uses an open drain output type, it is possible to connect a pull-up resistor to VDD or another power supply [The output "High" voltage (VOUT) in this case becomes VDD or the voltage of the other power supply].

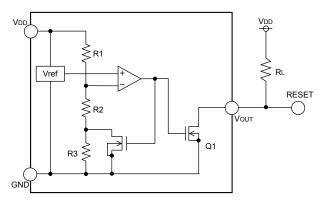


Fig.12 (BU48xx type internal block diagram)

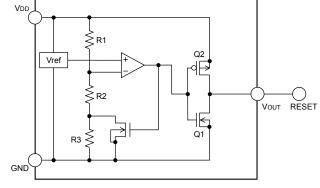


Fig.13 (BU49xx type internal block diagram)

Reference Data

Part Number	tplн[µs]	tphl[µs]					
BU4845	23.3	275.9					
BU4945	3.5	354.3					
	Vpp=4.3V→5.1V	VDD=5.1V→4.3V					

* This data is for reference only.

This figure will vary with the application, so please confirm actual operation conditions before use.

Timing Waveforms

Example: The following shows the relationship between the input voltage V_{DD}, the C_T Terminal Voltage V_{CT} and the output voltage V_{DU} when the input power supply voltage V_{DD} is made to sweep up and sweep down (The circuits are those in Fig.12 and 13).

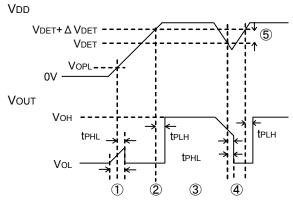


Fig.14 Timing Waveforms

- (1)When the power supply is turned on, the output is unsettled from after over the operating limit voltage (VOPL) until tPHL. Therefore it is possible that the reset signal is not outputted when the rise time of VDD is faster than tPHL.
- ②When VDD is greater than VOPL but less than the reset release voltage (VDET + VDET), output (VOUT) voltages will switch to L.
- (3)If VDD exceeds the reset release voltage (VDET + VDET), then VOUT switches from L to H (with a delay of tPLH).
- (4) If VDD drops below the detection voltage (VDET) when the power supply is powered down or when there is a power supply fluctuation, VOUT switches to L (with a delay of tPHL).
- (5) The potential deference between the detection voltage and the release voltage is known as the hysteresis width (VDET). The system is designed such that the output does not flip-flop with power supply fluctuations within this hysteresis width, preventing malfunctions due to noise.

Circuit Applications

Examples of a common power supply detection reset circuit

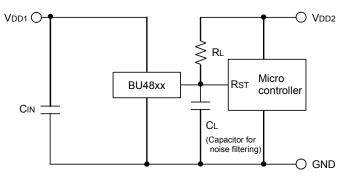


Fig.15 Open Drain Output type

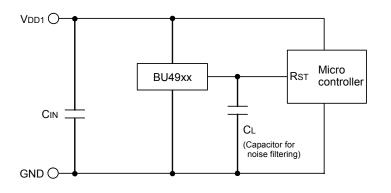


Fig.16 CMOS Output type

Application examples of BU48xx series (Open Drain output type) and BU49xx series (CMOS output type) are shown below.

 $\label{eq:case1} CASE1: The power supply of the microcontroller (VDD2) \\ differs$

from the power supply of the reset detection (V DD1). Use the Open Drain Output Type (BU48xx series) attached a load resistance (R_L) between the output and VDD2. (As shown Fig.15)

CASE2:The power supply of the microcontroller (VDD1) is same

as the power supply of the reset detection (VDD1). Use CMOS output type (BU43xx series) or Open Drain Output Type (BU48xx series) attached a load resistance (R_L) between the output and VDD1. (As shown Fig.16)

When a capacitance C_L for noise filtering or setting the output delay time is connected to the VouT pin (the reset signal input terminal of the microcontroller), please take into account the waveform of the rise and fall of the output voltage (VouT).

Operational Notes

1. Absolute maximum range

Absolute Maximum Ratings are those values beyond which the life of a device may be destroyed. We cannot be defined the failure mode, such as short mode or open mode. Therefore a physical security countermeasure, like fuse, is to be given when a specific mode to be beyond absolute maximum ratings is considered.

- GND potential GND terminal should be a lowest voltage potential every state. Please make sure all pins that are over ground even if include transient feature.
- 3. Electrical Characteristics

Be sure to check the electrical characteristics that are one the tentative specification will be changed by temperature, supply voltage, and external circuit.

- 4. Bypass Capacitor for Noise Rejection Please put into the to reject noise between VDD pin and GND with 1uF over and between VOUT pin and GND with 1000pF. If extremely big capacitor is used, transient response might be late. Please confirm sufficiently for the point.
- 5. Short Circuit between Terminal and Soldering Don't short-circuit between Output pin and VDD pin, Output pin and GND pin, or VDD pin and GND pin. When soldering the IC on circuit board please is unusually cautious about the orientation and the position of the IC. When the orientation is mistaken the IC may be destroyed.
- 6. Electromagnetic Field Mal-function may happen when the device is used in the strong electromagnetic field.
- 7. The VDD line inpedance might cause oscillation because of the detection current.
- 8. A VDD -GND capacitor (as close connection as possible) should be used in high VDD line impedance condition.
- 9. Lower than the minimum input voltage makes the VOUT high impedance, and it must be VDD in pull up (VDD) condition.
- 10. Recommended value of R_LResistar is over $10k\Omega$ (VDET=1.5V to 4.8V), over $100k\Omega$ (VDET=0.9 to 1.4V).
- 11. This IC has extremely high impedance terminals. Small leak current due to the uncleanness of PCB surface might cause unexpected operations. Application values in these conditions should be selected carefully. If 10MΩ leakage is assumed between the C_T terminal and the GND terminal, 1MΩ connection between the CT terminal and the VDD terminal would be recommended. Also, if the leakage is assumed between the VOUT terminal and the GND terminal, the pull up resistor should be less than 1/10 of the assumed leak resistance.
- 12. External parameters For R_L, the recommended range is $10k\Omega$ to $1M\Omega$. There are many factors (board layout, etc) that can affect characteristics. Please verify and confirm using practical applications.
- 13. Power on reset operation Please note that the power on reset output varies with the VDD rise up time. Please verify the actual operation.
- 14. Precautions for board inspection Connecting low-impedance capacitors to run inspections with the board may produce stress on the IC. Therefore, be certain to use proper discharge procedure before each process of the test operation. To prevent electrostatic accumulation and discharge in the assembly process, thoroughly ground yourself and any equipment that could sustain ESD damage, and continue observing ESD-prevention procedures in all handing, transfer and storage operations. Before attempting to connect components to the test setup, make certain that the power supply is OFF. Likewise, be sure the power supply is OFF before removing any component connected to the test setup.
- 15. When the power supply, is turned on because of incertain cases, momentary Rash-current flow into the IC at the logic unsettled, the couple capacitance, GND pattern of width and leading line must be considered.

Status of this document

The Japanese version of this document is formal specification. A customer may use this translation version only for a reference to help reading the formal version.

If there are any differences in translation version of this document formal version takes priority.

Notice

General Precaution

- Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
- All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.

Precaution on using ROHM Products

- 1) Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment, transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.
- 2) ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3) Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4) The Products are not subject to radiation-proof design.
- 5) Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6) In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse) is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7) De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8) Confirm that operation temperature is within the specified range described in the product specification.
- 9) ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1) When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2) In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- 2) You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1) Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3) Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4) Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

- 1) All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

- The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.
- 2) This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 3) The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 4) In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 5) The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.