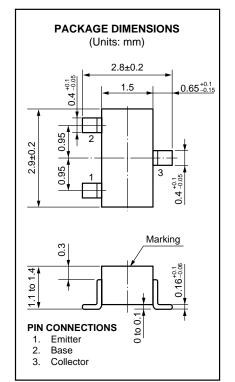


SILICON TRANSISTOR 2SC3585

MICROWAVE LOW NOISE AMPLIFIER NPN SILICON EPITAXIAL TRANSISOR

DESCRIPTION


The 2SC3585 is an NPN epitaxial silicon transistor designed for use in low-noise and small signal amplifiers from VHF band to UHF band. The 2SC3585 features excellent power gain with very low-noise figures. The 2SC3585 employs direct nitride passivated base surface process (DNP process) which is an NEC proprietary new fabrication technique which provides excellent noise figures at high current values. This allows excellent associated gain and very wide dynamic range.

FEATURES

NF 1.8 dB TYP. @f = 2.0 GHz
Ga 9 dB TYP. @f = 2.0 GHz

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

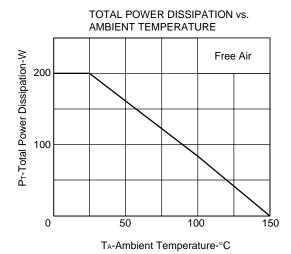
Collector to Base Voltage	Vсво	20	V
Collector to Emitter Voltage	VCEO	10	V
Emitter to Base Voltage	Vево	1.5	V
Collector Current	Ic	35	mΑ
Total Power Dissipation	PT	200	mW
Junction Temperature	Tj	150	°C
Storage Temperature	Tstg	-65 to +150	°C

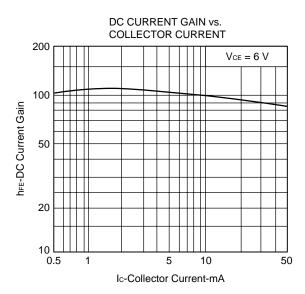
ELECTRICAL CHARACTERISTICS (TA = 25 °C)

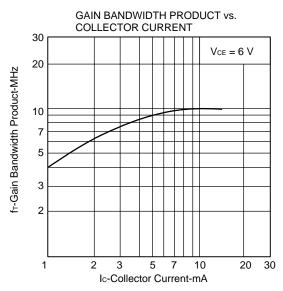
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Collector Cutoff Current	Ісво			1.0	μΑ	Vcb = 10 V, IE = 0
Emitter Cutoff Current	ІЕВО			1.0	μA	VEB = 1 V, IC = 0
DC Current Gain	hfe *	50	100	250		Vce = 6 V, Ic = 10 mA
Gain Bandwidth Product	fτ		10		GHz	Vce = 6 V, Ic = 10 mA
Feed-Back Capacitance	Cre **		0.3	0.8	pF	VcB = 10 V, IE = 0, f = 1.0 MHz
Insertion Power Gain	S _{21e} ²	6.0	8.0		dB	Vce = 6 V, Ic = 10 mA, f = 2.0 GHz
Maximum Available Gain	MAG		10		dB	Vce = 6 V, Ic = 10 mA, f = 2.0 GHz
Noise Figure	NF		1.8	3.0	dB	Vce = 6 V, Ic = 5 mA, f = 2.0 GHz

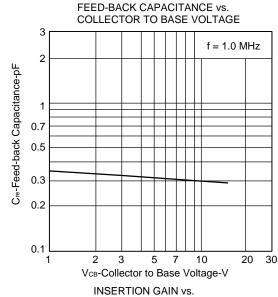
^{*} Pulse Measurement PW ≤ 350 μs, Duty Cycle ≤ 2 %

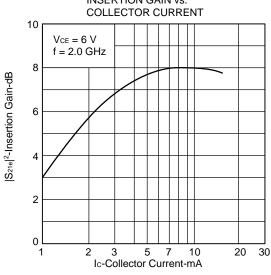
hee Classification

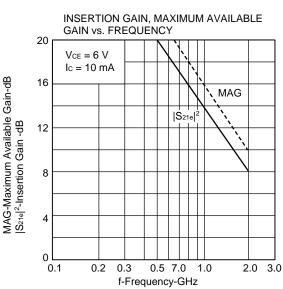

Class	R43/Q *	R44/R *	R45/S *
Marking	R43	R44	R45
hfE	50 to 100	80 to 160	125 to 250

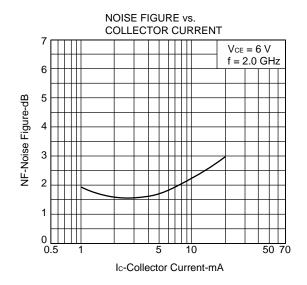

^{*} Old Specification / New Specification


^{**} The emitter terminal and the case shall be connected to the gurad terminal of the three-terminal capacitance bridge.



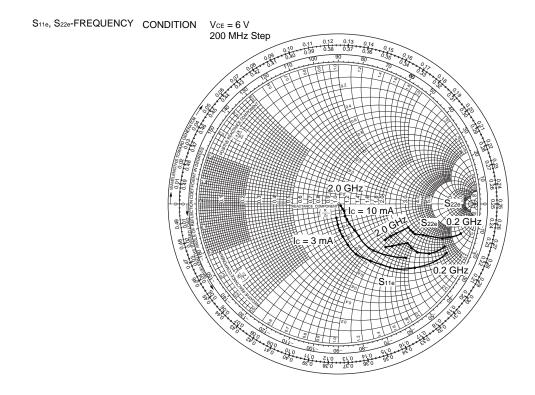

TYPICAL CHARACTERISTICS (TA = 25 °C)

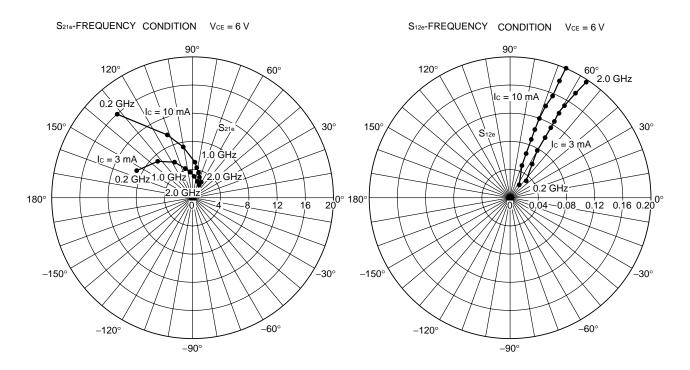




S-PARAMETER

 \mbox{Vce} = 6.0 V, Ic = 3.0 mA, Zo = 50 Ω


f (MHz)	S ₁₁	∠ S 11	S ₂₁	∠ S 21	S ₁₂	∠ S 12	S ₂₂	∠ S 22
i (ivimz)	311	∠ 311	321	∠ 321	312	∠ 312	322	∠ 322
200	0.858	-23.1	8.499	153.3	0.030	46.5	0.905	-13.5
400	0.724	-40.6	6.923	131.6	0.060	58.7	0.826	-21.2
600	0.580	-51.1	5.951	118.4	0.080	60.3	0.749	-27.0
800	0.457	-58.9	4.615	104.9	0.099	60.2	0.666	-28.6
1000	0.362	-65.6	4.134	98.0	0.106	61.2	0.614	-30.1
1200	0.304	-73.1	3.412	88.9	0.129	61.1	0.574	-30.0
1400	0.232	-82.2	3.180	82.0	0.148	60.1	0.542	-31.7
1600	0.179	-84.9	2.763	75.7	0.154	59.5	0.514	-35.2
1800	0.147	-88.2	2.726	70.5	0.188	58.7	0.483	-40.1
2000	0.108	-104.1	2.378	64.9	0.197	56.8	0.455	-42.6


 V_{CE} = 6.0 V, I_{C} = 10.0 mA, Z_{O} = 50 Ω

f (MHz)	S ₁₁	∠ S ₁₁	S ₂₁	∠ S 21	S ₁₂	∠ S12	S22	∠ S22
200	0.613	-37.0	16.141	133.9	0.021	52.5	0.781	-19.4
400	0.406	-53.6	10.096	111.5	0.053	70.6	0.651	-22.4
600	0.285	-56.0	7.640	101.4	0.064	73.0	0.590	-24.0
800	0.214	-57.6	5.564	90.7	0.089	71.7	0.548	-22.8
1000	0.156	-58.1	4.787	86.0	0.095	70.6	0.526	-23.3
1200	0.130	-54.2	3.876	79.3	0.119	70.3	0.506	-22.1
1400	0.105	-56.5	3.573	74.0	0.141	68.3	0.489	-24.8
1600	0.065	-55.0	3.058	69.4	0.158	68.9	0.470	-27.9
1800	0.042	-48.9	2.997	65.3	0.178	66.5	0.439	-31.4
2000	0.018	-65.6	2.590	60.7	0.202	66.2	0.426	-36.5

3

S-PARAMETER

[MEMO]

[MEMO]

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5