

# SILICON TRANSISTOR 2SC5004

# NPN SILICON EPITAXIAL TRANSISTOR 3 PINS ULTRA SUPER MINI MOLD

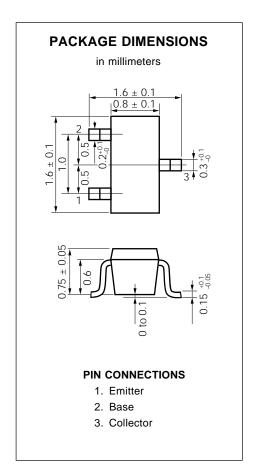
#### **DESCRIPTION**

The 2SC5004 is a low supply voltage transistor designed for UHF OSC/MIX.

It is suitable for a high density surface mount assembly since the transistor has been applied ultra super mini mold package.

#### **FEATURES**

- High ft: 5.0 GHz TYP. (@ VcE = 5 V, Ic = 5 mA, f = 1 GHz)
- Low Cre: 0.9 pF TYP. (@ VcB = 5 V, IE = 0, f = 1 MHz)
- Ultra Super Mini Mold Package. (1.6 mm × 0.8 mm)


#### ORDERING INFORMATION

| PART NUMBER  | QUANTITY     | PACKING STYLE                                      |  |
|--------------|--------------|----------------------------------------------------|--|
| 2SC5004      | 50 pcs./unit | Embossed tape 8 mm wide. Pin 3 (Collector) face to |  |
| 2SC5004 - T1 | 3 kpcs./Reel | perforation side of the tape.                      |  |

<sup>\*</sup> Please contact with responsible NEC person, if you require evaluation sample. Unit sample quantity shall be 50 pcs.

### ABSOLUTE MAXIMUM RATINGS (TA = 25 $^{\circ}$ C)

| Collector to Base Voltage    | Vсво | 20          | V  |
|------------------------------|------|-------------|----|
| Collector to Emitter Voltage | Vceo | 12          | V  |
| Emitter to Base Voltage      | Vево | 3           | V  |
| Collector Current            | Ic   | 60          | mΑ |
| Total Power Dissipation      | Рт   | 100         | mW |
| Junction Temperature         | Tj   | 125         | °C |
| Storage Temperature          | Tstg | -55 to +125 | °C |

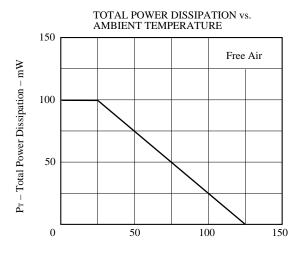




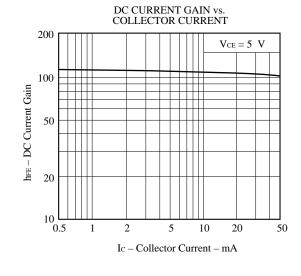
## ELECTRICAL CHARACTERISTICS (TA = 25 $^{\circ}$ C)

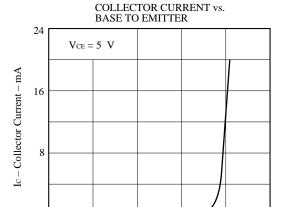
| CHARACTERISTIC               | SYMBOL                          | MIN. | TYP. | MAX. | UNIT | TEST CONDITION                  |
|------------------------------|---------------------------------|------|------|------|------|---------------------------------|
| Collector Cutoff Current     | Ісво                            |      |      | 0.1  | μΑ   | Vcb = 15 V, IE = 0              |
| Emitter Cutoff Current       | Ієво                            |      |      | 0.1  | μΑ   | VEB = 1 V, Ic = 0               |
| Collector Saturation Voltage | VCE (sat)                       |      |      | 0.5  | V    | hfe = 10, Ic = 5 mA             |
| DC Current Gain              | hfe                             | 60   |      | 120  |      | VcE = 5 V, Ic = 5 mA *1         |
| Gain Bandwidth Product       | fτ                              | 3.0  | 5.0  |      | GHz  | VcE = 5 V, Ic = 5 mA            |
| Feed-back Capacitance        | Cre                             |      | 0.9  | 1.2  | pF   | Vcb = 5 V, IE = 0, f = 1 MHz *2 |
| Insertion Power Gain         | S <sub>21</sub> e  <sup>2</sup> | 5.0  |      |      | dB   | VcE = 5 V, Ic = 5 mA, f = 1 GHz |

<sup>\*1</sup> Pulse Measurement PW  $\leq$  350  $\mu$ s, Duty Cycle  $\leq$  2 %


#### h<sub>FE</sub> Classification

| Rank    | FB        |
|---------|-----------|
| Marking | 77        |
| hfe     | 60 to 120 |


2


<sup>\*2</sup> The emitter terminal and the case shall be connected to the guard terminal of the three-terminal capacitance bridge.

#### TYPICAL CHARACTERISTICS (TA = 25 °C)



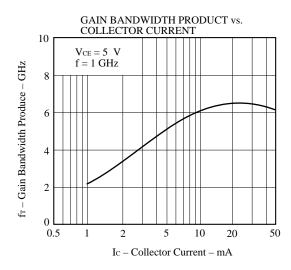
 $T_A-Ambient\ Temperature-{}^{\circ}C$ 

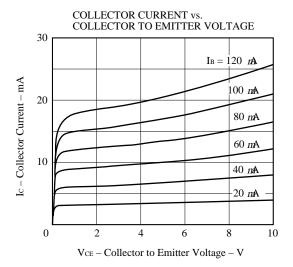


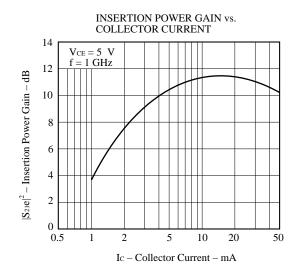


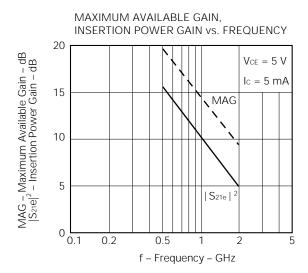
 $V_{BE}-Base$  to Emitter Voltage -V

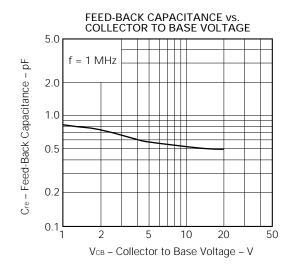
0.6


0.8


1.0


0.4


0


0.2











2500.00

2600.00

2700.00

2800.00

2900.00

3000.00

.558

.566 .573

.585

.590

.603

131.7

128.2

126.1

123.1

120.7

118.2

1.320

1.276 1.236

1.199

1.158

1.132

-44.9

-50.7

-55.7

-61.4

-66.4 -71.7

.224

.235

.244

.256

.263

.278

-23.4

-27.0

-29.9

-33.7 -37.0

-40.9

| S-PARAMETER        | ₹                        |                  |                 |                |              |                |              |                   |
|--------------------|--------------------------|------------------|-----------------|----------------|--------------|----------------|--------------|-------------------|
| Vce = 5 V, Ic = 5  | mA, Zo = 5               | 0 Ω              |                 |                |              |                |              |                   |
| FREQUENCY          |                          | S <sub>11</sub>  | S <sub>21</sub> |                | S            | 12             | S            | 22                |
| MHz                | MAG                      | ANG              | MAG             | ANG            | MAG          | ANG            | MAG          | ANG               |
| 100.00             | .840                     | -29.2            | 8.993           | 151.3          | .031         | 68.1           | .915         | -17.9             |
| 200.00             | .719                     | <b>-57.1</b>     | 8.284           | 129.5          | .050         | 52.7           | .771         | -29.5             |
| 300.00             | .624                     | -83.3            | 7.527           | 112.2          | .062         | 44.8           | .648         | -35.5             |
| 400.00             | .549                     | -104.8           | 6.560           | 98.3           | .070         | 39.1           | .565         | -38.1             |
| 500.00             | .503<br>.472             | -122.6<br>-135.8 | 5.797<br>4.992  | 86.3<br>76.6   | .077<br>.084 | 35.1<br>32.4   | .508<br>.467 | -40.2<br>-41.0    |
| 600.00<br>700.00   | .454                     | -133.0<br>-147.1 | 4.460           | 68.0           | .091         | 30.3           | .440         | -42.1             |
| 800.00             | .443                     | <b>–156.5</b>    | 3.972           | 59.8           | .097         | 27.5           | .415         | -43.3             |
| 900.00             | .440                     | -164.4           | 3.601           | 52.4           | .104         | 25.5           | .399         | -44.2             |
| 1000.00            | .436                     | -171.5           | 3.284           | 45.2           | .111         | 23.0           | .381         | -46.1             |
| 1100.00            | .437                     | -177.2           | 3.029           | 38.6           | .119         | 20.8           | .370         | -46.9             |
| 1200.00            | .441                     | 176.7            | 2.815           | 31.8<br>25.5   | .127<br>.135 | 18.0           | .359<br>.348 | -49.4<br>-50.9    |
| 1300.00<br>1400.00 | .443<br>.449             | 171.7<br>167.0   | 2.608<br>2.452  | 25.5<br>19.3   | .135         | 15.8<br>12.9   | .340         | -50.9<br>-53.6    |
| 1500.00            | .453                     | 162.5            | 2.303           | 13.1           | .149         | 9.9            | .328         | -56.0             |
| 1600.00            | .462                     | 158.5            | 2.184           | 7.2            | .158         | 7.1            | .321         | -58.2             |
| 1700.00            | .465                     | 154.3            | 2.075           | 1.0            | .166         | 4.0            | .312         | -61.3             |
| 1800.00            | .473                     | 150.9            | 1.974           | -4.6           | .175         | 1.1            | .304         | -63.8             |
| 1900.00            | .481                     | 147.1<br>143.7   | 1.883           | −10.5<br>−16.0 | .184<br>.193 | -2.3<br>-5.4   | .297<br>.290 | -67.5<br>-70.4    |
| 2000.00<br>2100.00 | .491<br>.499             | 143.7            | 1.795<br>1.730  | -16.0<br>-21.9 | .193         | -5.4<br>-9.0   | .290         | -70.4<br>-74.4    |
| 2200.00            | .506                     | 137.6            | 1.661           | -27.3          | .211         | -12.3          | .274         | -78.3             |
| 2300.00            | .518                     | 134.5            | 1.608           | -33.2          | .220         | -15.9          | .269         | <del>-</del> 82.1 |
| 2400.00            | .523                     | 131.7            | 1.543           | -38.7          | .229         | -19.3          | .260         | -87.0             |
| 2500.00            | .535                     | 129.3            | 1.497           | -43.8          | .239         | -22.8          | .254         | -91.1             |
| 2600.00            | .541<br>.549             | 126.4<br>124.3   | 1.446<br>1.402  | -49.5<br>-54.6 | .250<br>.259 | -27.0<br>-30.5 | .250<br>.244 | -97.0<br>-102.0   |
| 2700.00<br>2800.00 | .563                     | 124.3            | 1.360           | -54.6<br>-60.1 | .269         | -30.5<br>-34.3 | .242         | -102.0<br>-107.8  |
| 2900.00            | .568                     | 119.6            | 1.312           | -65.1          | .279         | -38.2          | .236         | -113.8            |
| 3000.00            | .582                     | 117.1            | 1.282           | -70.4          | .290         | -42.2          | .237         | -119.5            |
| Vce = 5 V, Ic = 3  | mA, Zo = 5               | 0 Ω              |                 |                |              |                |              |                   |
| FREQUENCY          |                          | S <sub>11</sub>  | S               | 21             | S            | 12             | S            | 22                |
| MHz                | MAG                      | ANG              | MAG             | ANG            | MAG          | ANG            | MAG          | ANG               |
| 100.00             | .907                     | -23.5            | 5.717           | 154.7          | .033         | 70.9           | .953         | -13.3             |
| 200.00             | .825                     | -45.3            | 5.461           | 135.7          | .056         | 56.2           | .855         | -23.5             |
| 300.00             | .747                     | -67.1            | 5.224           | 119.6          | .074         | 45.2           | .752         | -30.1             |
| 400.00             | .673                     | <b>-86.6</b>     | 4.779           | 105.9          | .083         | 36.9           | .676         | -33.8             |
| 500.00<br>600.00   | .615<br>.569             | -104.4<br>-118.5 | 4.452<br>3.938  | 93.4<br>82.6   | .092<br>.097 | 31.0<br>26.2   | .616<br>.570 | -36.9<br>-38.7    |
| 700.00             | .535                     | -131.4           | 3.630           | 72.9           | .102         | 22.8           | .538         | -40.2             |
| 800.00             | .511                     | -142.6           | 3.298           | 63.7           | .106         | 19.5           | .509         | -41.9             |
| 900.00             | .497                     | -152.1           | 3.039           | 55.6           | .112         | 17.1           | .491         | -43.3             |
| 1000.00            | .487                     | -160.2           | 2.798           | 47.7           | .116         | 14.9           | .471         | -45.1             |
| 1100.00            | .483                     | -167.4           | 2.590           | 40.7           | .121         | 12.5           | .456         | -46.5             |
| 1200.00            | .482                     | -174.5           | 2.420           | 33.4           | .126         | 10.6           | .444         | -48.7             |
| 1300.00<br>1400.00 | .481<br>.485             | 179.7<br>174.3   | 2.250<br>2.133  | 26.8<br>20.2   | .132<br>.137 | 8.0<br>6.0     | .433<br>.424 | -50.6<br>-53.4    |
| 1500.00            | .486                     | 168.9            | 2.133           | 13.8           | .143         | 3.9            | .412         | -55.4<br>-55.9    |
| 1600.00            | .494                     | 164.3            | 1.906           | 7.5            | .150         | 1.6            | .405         | -58.4             |
| 1700.00            | .497                     | 159.7            | 1.805           | 1.0            | .157         | -1.0           | .396         | -61.1             |
| 1800.00            | .502                     | 155.7            | 1.728           | -4.6           | .163         | -3.1           | .389         | -63.9             |
| 1900.00            | .510                     | 151.5            | 1.654           | -11.0          | .171         | -5.8           | .381         | -67.3             |
| 2000.00            | .517                     | 147.5            | 1.578           | -16.7          | .178         | -8.2           | .374         | -70.6             |
| 2100.00            | .525                     | 143.9            | 1.525           | -22.6          | .188         | -10.9          | .368         | -74.0             |
| 2200.00<br>2300.00 | .532<br>.543             | 140.9<br>137.4   | 1.460           | -28.3<br>-34.0 | .196<br>.206 | −13.8<br>−16.9 | .360<br>.355 | –78.0<br>–81.7    |
| 2400.00            | .543<br>.548             | 137.4<br>134.2   | 1.418<br>1.360  | -34.0<br>-39.7 | .206         | -16.9<br>-20.5 | .355<br>.347 | -81.7<br>-86.4    |
| Z-700.00           | .5 <del>4</del> 6<br>558 | 134.2            | 1.320           | -39.7<br>-44.9 | .214         | -20.5<br>-23.4 | .341         | -90. <del>4</del> |

-90.5

-95.6

-100.4

-105.6 -110.9 -116.4

.341

.338

.332

.328 .325

.325

#### **S-PARAMETER**

| 5-FARAIVIE I ER                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $V_{CE} = 5 \text{ V}, \text{ Ic} = 1 \text{ m}$                                                                                                                                                                                                                                             | A, Zo = 5                                                                                                                                                                                                            | 0 Ω                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                        |  |
| FREQUENCY                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      | S <sub>11</sub>                                                                                                                                                                              | S                                                                                                                                                                                                                                                                          | 21                                                                                                                                                                                                                                                         | S <sub>12</sub>                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                | Sa                                                                                                                                                                                                                                   | 22                                                                                                                                                                                     |  |
| MHz                                                                                                                                                                                                                                                                                          | MAG                                                                                                                                                                                                                  | ANG                                                                                                                                                                                          | MAG                                                                                                                                                                                                                                                                        | ANG                                                                                                                                                                                                                                                        | MAG                                                                                                                                                                                                                                                          | ANG                                                                                                                                                                                                                                              | MAG                                                                                                                                                                                                                                  | ANG                                                                                                                                                                                    |  |
| 100.00<br>200.00<br>300.00<br>400.00<br>500.00<br>600.00<br>700.00<br>800.00<br>900.00<br>1000.00<br>1200.00<br>1300.00<br>1400.00<br>1500.00<br>1600.00<br>1700.00<br>2000.00<br>2100.00<br>2200.00<br>2300.00<br>2400.00<br>2500.00<br>2700.00<br>2800.00<br>2900.00<br>2900.00<br>2900.00 | .992<br>.949<br>.912<br>.862<br>.821<br>.774<br>.732<br>.698<br>.667<br>.644<br>.614<br>.603<br>.593<br>.596<br>.592<br>.594<br>.599<br>.600<br>.611<br>.620<br>.636<br>.641<br>.648<br>.652<br>.663                 | -15.7 -32.2 -47.8 -63.1 -77.5 -90.6 -103.0 -115.2 -126.1 -136.5 -145.4 -154.2 -161.6 -168.6 -175.4 178.7 172.6 167.6 162.0 157.2 152.4 148.5 144.2 140.2 136.9 132.9 130.0 126.5 123.5 120.6 | 1.958<br>2.005<br>2.034<br>1.954<br>1.939<br>1.780<br>1.733<br>1.665<br>1.607<br>1.549<br>1.475<br>1.415<br>1.340<br>1.287<br>1.218<br>1.174<br>1.129<br>1.083<br>1.043<br>1.003<br>.973<br>.934<br>.913<br>.875<br>.851<br>.825<br>.802<br>.777<br>.752                   | 161.4<br>144.3<br>129.7<br>116.5<br>104.7<br>92.7<br>82.1<br>71.5<br>62.3<br>53.0<br>44.7<br>36.4<br>28.8<br>21.5<br>14.2<br>7.6<br>.5<br>-5.8<br>-12.4<br>-18.4<br>-24.6<br>-30.4<br>-36.2<br>-41.8<br>-47.0<br>-52.6<br>-57.5<br>-62.8<br>-67.5<br>-72.5 | .036<br>.066<br>.093<br>.110<br>.125<br>.135<br>.141<br>.144<br>.146<br>.147<br>.146<br>.146<br>.144<br>.142<br>.142<br>.141<br>.141<br>.141<br>.141<br>.151<br>.156<br>.163<br>.171<br>.156<br>.163<br>.171<br>.182<br>.193<br>.204<br>.217<br>.229<br>.245 | 76.2<br>62.4<br>50.4<br>40.2<br>30.8<br>22.4<br>15.5<br>9.1<br>4.4<br>8<br>-4.3<br>-8.3<br>-11.1<br>-13.7<br>-15.8<br>-17.1<br>-18.5<br>-19.1<br>-19.8<br>-20.3<br>-20.8<br>-21.2<br>-21.8<br>-23.1<br>-24.1<br>-26.2<br>-28.3<br>-30.7<br>-36.8 | .987<br>.956<br>.906<br>.864<br>.822<br>.786<br>.757<br>.728<br>.705<br>.685<br>.671<br>.656<br>.647<br>.637<br>.628<br>.621<br>.611<br>.606<br>.597<br>.595<br>.588<br>.583<br>.577<br>.573<br>.566<br>.563<br>.558<br>.557<br>.553 | -7.1 -13.9 -19.4 -23.7 -27.7 -30.8 -33.7 -36.4 -38.7 -41.3 -43.6 -46.2 -48.8 -51.8 -54.6 -57.6 -60.8 -63.9 -67.5 -71.1 -74.9 -78.9 -83.0 -87.4 -91.6 -96.5 -101.4 -106.5 -111.6 -116.9 |  |
| VcE = 3 V, Ic = 5 m/                                                                                                                                                                                                                                                                         | A, Zo = 5                                                                                                                                                                                                            | 0 Ω                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                        |  |
| FREQUENCY                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                      | S <sub>11</sub>                                                                                                                                                                              | S                                                                                                                                                                                                                                                                          | 21                                                                                                                                                                                                                                                         | Sız                                                                                                                                                                                                                                                          | <b>S</b> 12                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      | S <sub>22</sub>                                                                                                                                                                        |  |
| MHz                                                                                                                                                                                                                                                                                          | MAG                                                                                                                                                                                                                  | ANG                                                                                                                                                                                          | MAG                                                                                                                                                                                                                                                                        | ANG                                                                                                                                                                                                                                                        | MAG                                                                                                                                                                                                                                                          | ANG                                                                                                                                                                                                                                              | MAG                                                                                                                                                                                                                                  | ANG                                                                                                                                                                                    |  |
| 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1100.00 1200.00 1300.00 1400.00 1500.00 1600.00 1700.00 1800.00 2100.00 2200.00 2300.00 2400.00 2500.00 2600.00 2700.00 2800.00 2900.00 2900.00 3000.00                                                                       | .830<br>.705<br>.615<br>.548<br>.508<br>.483<br>.471<br>.462<br>.460<br>.459<br>.461<br>.464<br>.468<br>.475<br>.479<br>.500<br>.507<br>.516<br>.525<br>.532<br>.544<br>.559<br>.567<br>.574<br>.585<br>.592<br>.604 | -30.0 -61.3 -88.8 -111.0 -128.6 -141.3 -152.1 -161.0 -168.4 -175.2 179.2 173.5 168.8 164.3 160.0 156.1 152.0 148.8 145.2 141.9 138.7 136.1 132.8 130.2 127.8 124.8 122.7 120.1 118.1 115.7   | 8.873<br>8.192<br>7.362<br>6.349<br>5.561<br>4.779<br>4.244<br>3.773<br>3.421<br>3.114<br>2.875<br>2.664<br>2.469<br>2.325<br>2.175<br>2.076<br>1.957<br>1.869<br>1.783<br>1.703<br>1.642<br>1.569<br>1.522<br>1.459<br>1.417<br>1.368<br>1.326<br>1.283<br>1.241<br>1.212 | 149.7 127.6 110.0 96.2 84.3 74.6 66.0 57.9 50.4 43.4 36.9 30.1 23.7 17.3 11.3 5.1 -1.0 -6.6 -12.7 -18.3 -24.1 -29.6 -35.3 -40.8 -46.0 -51.6 -56.7 -62.2 -67.1 -72.3                                                                                        | .035<br>.056<br>.071<br>.078<br>.086<br>.093<br>.100<br>.107<br>.115<br>.123<br>.130<br>.138<br>.147<br>.156<br>.163<br>.172<br>.180<br>.190<br>.198<br>.207<br>.218<br>.226<br>.237<br>.245<br>.255<br>.264<br>.274<br>.284<br>.293<br>.304                 | 67.5 51.3 42.2 37.2 33.3 30.4 28.4 25.7 23.6 20.4 18.7 15.8 13.2 10.2 7.2 4.1 .9 -2.2 -5.5 -8.8 -12.4 -16.0 -19.6 -23.4 -26.8 -31.2 -34.7 -38.8 -42.6 -46.7                                                                                      | .900<br>.738<br>.604<br>.516<br>.457<br>.411<br>.383<br>.356<br>.337<br>.319<br>.305<br>.296<br>.283<br>.275<br>.263<br>.255<br>.247<br>.238<br>.232<br>.225<br>.220<br>.213<br>.208<br>.203<br>.199<br>.200<br>.196<br>.199<br>.200 | -20.9 -34.1 -41.4 -44.4 -47.2 -48.4 -49.6 -51.0 -52.1 -54.3 -55.4 -58.1 -60.0 -63.3 -66.1 -69.0 -72.8 -75.6 -80.3 -84.2 -94.2 -98.8 -105.2 -110.7 -117.4 -124.1 -130.9 -137.8 -143.7   |  |

| S-PARAMETER                                                                                                                                                                                                     | ₹                                                                                                                                                                                                            |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                                                                             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Vce = 3 V, Ic = 3 r                                                                                                                                                                                             | mA, Zo = 5                                                                                                                                                                                                   | 0 Ω                                                                                                                                                                                         |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                                                                             |  |
| FREQUENCY                                                                                                                                                                                                       | Y S <sub>11</sub>                                                                                                                                                                                            |                                                                                                                                                                                             | <b>S</b> 21                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  | S                                                                                                                                                                                                                                            | 12                                                                                                                                            | <b>S</b> 22                                                                                                                                                                                                                          |                                                                                                                                                                             |  |
| MHz                                                                                                                                                                                                             | MAG                                                                                                                                                                                                          | ANG                                                                                                                                                                                         | MAG                                                                                                                                                                                                                                                                        | ANG                                                                                                                                                                                                                              | MAG                                                                                                                                                                                                                                          | ANG                                                                                                                                           | MAG                                                                                                                                                                                                                                  | ANG                                                                                                                                                                         |  |
| 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 1000.00 1100.00 1200.00 1300.00 1400.00 1500.00 1600.00 1700.00 2000.00 2100.00 2200.00 2300.00 2400.00 2500.00 2600.00 2700.00 2800.00 2900.00 2900.00 | .910<br>.815<br>.737<br>.664<br>.609<br>.539<br>.521<br>.510<br>.502<br>.498<br>.499<br>.505<br>.516<br>.515<br>.516<br>.522<br>.531<br>.538<br>.547<br>.552<br>.563<br>.568<br>.585<br>.585<br>.593<br>.604 | -23.7 -48.0 -70.9 -91.2 -109.6 -123.6 -136.4 -147.1 -156.1 -164.3 -171.1 -177.7 176.7 171.4 166.5 162.0 157.3 153.7 149.5 145.8 142.2 139.3 135.7 132.8 130.1 126.9 124.7 121.8 119.5 117.0 | 5.615<br>5.419<br>5.156<br>4.674<br>4.337<br>3.814<br>3.496<br>3.165<br>2.913<br>2.676<br>2.473<br>2.310<br>2.152<br>2.032<br>1.906<br>1.817<br>1.725<br>1.646<br>1.577<br>1.504<br>1.449<br>1.391<br>1.350<br>1.293<br>1.257<br>1.214<br>1.177<br>1.141<br>1.102<br>1.077 | 154.6<br>134.2<br>117.7<br>103.8<br>91.1<br>80.2<br>70.6<br>61.6<br>53.5<br>45.6<br>38.6<br>31.4<br>24.6<br>18.0<br>11.6<br>5.2<br>-1.1<br>-7.1<br>-13.4<br>-19.0<br>-24.9<br>-30.6<br>-42.0<br>-47.2<br>-53.0<br>-68.6<br>-73.8 | .038<br>.065<br>.084<br>.094<br>.102<br>.108<br>.113<br>.119<br>.124<br>.129<br>.134<br>.139<br>.145<br>.152<br>.157<br>.164<br>.170<br>.178<br>.186<br>.194<br>.202<br>.210<br>.221<br>.229<br>.238<br>.248<br>.258<br>.270<br>.278<br>.289 | 70.8 53.8 42.7 34.8 28.8 24.3 20.9 17.4 15.1 12.0 10.1 7.3 5.4 2.8 -4.5 -6.8 -9.6 -12.2 -15.1 -18.1 -24.4 -27.7 -31.2 -34.6 -38.4 -42.1 -45.8 | .943<br>.832<br>.718<br>.635<br>.571<br>.520<br>.486<br>.455<br>.434<br>.414<br>.398<br>.386<br>.373<br>.363<br>.352<br>.345<br>.328<br>.321<br>.313<br>.307<br>.301<br>.297<br>.291<br>.287<br>.285<br>.282<br>.283<br>.281<br>.285 | -15.4 -27.0 -34.6 -38.8 -42.4 -44.4 -46.3 -48.2 -49.7 -52.0 -53.4 -56.1 -57.9 -61.1 -63.9 -66.8 -70.1 -73.1 -77.3 -81.0 -85.4 -89.8 -94.2 -99.7 -104.4 -115.7 -121.9 -133.6 |  |
| Vce = 3 V, Ic = 1 r                                                                                                                                                                                             | mA, Zo = 5                                                                                                                                                                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                                                                             |  |
| FREQUENCY                                                                                                                                                                                                       |                                                                                                                                                                                                              | S <sub>11</sub>                                                                                                                                                                             |                                                                                                                                                                                                                                                                            | 21                                                                                                                                                                                                                               | S                                                                                                                                                                                                                                            |                                                                                                                                               |                                                                                                                                                                                                                                      | 22                                                                                                                                                                          |  |
| MHz                                                                                                                                                                                                             | MAG                                                                                                                                                                                                          | ANG                                                                                                                                                                                         | MAG                                                                                                                                                                                                                                                                        | ANG                                                                                                                                                                                                                              | MAG                                                                                                                                                                                                                                          | ANG                                                                                                                                           | MAG                                                                                                                                                                                                                                  | ANG                                                                                                                                                                         |  |
| 100.00<br>200.00<br>300.00<br>400.00<br>500.00<br>600.00<br>700.00<br>800.00                                                                                                                                    | .985<br>.945<br>.908<br>.855<br>.812<br>.766<br>.726                                                                                                                                                         | -16.6<br>-33.5<br>-49.9<br>-65.6<br>-80.4<br>-93.7<br>-106.2<br>-118.6                                                                                                                      | 1.985<br>1.998<br>2.025<br>1.942<br>1.913<br>1.755<br>1.705                                                                                                                                                                                                                | 159.3<br>142.9<br>127.8<br>114.4<br>102.3<br>90.0<br>79.4<br>68.7                                                                                                                                                                | .041<br>.077<br>.106<br>.127<br>.143<br>.152<br>.159                                                                                                                                                                                         | 75.7<br>60.9<br>49.0<br>37.8<br>28.8<br>20.1<br>13.3<br>6.9                                                                                   | .985<br>.947<br>.892<br>.842<br>.795<br>.754<br>.722                                                                                                                                                                                 | -8.0<br>-15.6<br>-21.8<br>-26.7<br>-31.0<br>-34.5<br>-37.6<br>-40.4                                                                                                         |  |

| FREQUENCY          |              | S <sub>11</sub> | S            | 21             | Si           | 12             | S            | 22               |
|--------------------|--------------|-----------------|--------------|----------------|--------------|----------------|--------------|------------------|
| MHz                | MAG          | ANG             | MAG          | ANG            | MAG          | ANG            | MAG          | ANG              |
| 100.00             | .985         | -16.6           | 1.985        | 159.3          | .041         | 75.7           | .985         | -8.0             |
| 200.00             | .945         | -33.5           | 1.998        | 142.9          | .077         | 60.9           | .947         | -15.6            |
| 300.00             | .908         | -49.9           | 2.025        | 127.8          | .106         | 49.0           | .892         | -21.8            |
| 400.00             | .855         | -65.6           | 1.942        | 114.4          | .127         | 37.8           | .842         | -26.7            |
| 500.00             | .812         | -80.4           | 1.913        | 102.3          | .143         | 28.8           | .795         | -31.0            |
| 600.00             | .766         | -93.7           | 1.755        | 90.0           | .152         | 20.1           | .754         | -34.5            |
| 700.00             | .726         | -106.2          | 1.705        | 79.4           | .159         | 13.3           | .722         | -37.6            |
| 800.00             | .693         | -118.6          | 1.635        | 68.7           | .162         | 6.9            | .692         | -40.4            |
| 900.00             | .664         | -129.4          | 1.571        | 59.3           | .163         | 1.9            | .667         | -42.9            |
| 1000.00            | .644         | -139.6          | 1.509        | 50.0           | .166         | -3.7           | .645         | -45.8            |
| 1100.00            | .627         | -148.2          | 1.438        | 41.7           | .165         | -7.4           | .630         | -48.3            |
| 1200.00            | .617         | -157.0          | 1.375        | 33.4           | .163         | -11.0          | .616         | <i>–</i> 51.3    |
| 1300.00            | .607         | -164.2          | 1.299        | 25.8           | .162         | -14.3          | .603         | -53.9            |
| 1400.00            | .604         | -171.0          | 1.247        | 18.5           | .162         | -17.1          | .593         | -57.3            |
| 1500.00            | .600         | -177.5          | 1.183        | 11.1           | .159         | -19.6          | .583         | -60.3            |
| 1600.00            | .604         | 176.6           | 1.140        | 4.4            | .158         | -21.5          | .575         | -63.7            |
| 1700.00            | .600         | 170.6           | 1.093        | -2.6           | .157         | -23.4          | .566         | -67.2            |
| 1800.00            | .604         | 165.7           | 1.048        | -8.9           | .157         | -23.7          | .561         | -70.6            |
| 1900.00            | .608         | 160.5           | 1.012        | -15.5          | .158         | -25.0          | .553         | <del>-74.5</del> |
| 2000.00            | .611         | 155.8           | .973         | -21.4          | .160         | -25.4          | .549         | -78.5            |
| 2100.00            | .620         | 151.0           | .942         | -27.7          | .165         | -26.5          | .543         | -82.7            |
| 2200.00            | .622         | 147.2           | .905         | -33.3          | .170         | -26.9          | .537         | -87.0            |
| 2300.00            | .631         | 143.0           | .884         | -39.3          | .176         | -28.0          | .532         | -91.5            |
| 2400.00            | .632         | 139.2           | .846         | -44.9<br>50.0  | .183         | -29.2          | .528         | -96.4            |
| 2500.00            | .642         | 135.9           | .824         | -50.0          | .192         | -30.0          | .523         | -101.0           |
| 2600.00            | .647         | 132.0           | .799         | -55.6          | .202         | -32.3          | .522         | -106.4           |
| 2700.00            | .652         | 129.1           | .774         | -60.5          | .214         | -34.4          | .519<br>.518 | -111.8           |
| 2800.00            | .660         | 125.6           | .752         | -65.8          | .226         | -36.9          |              | -117.2           |
| 2900.00<br>3000.00 | .664<br>.674 | 122.9<br>119.9  | .726<br>.709 | −70.5<br>−75.2 | .238<br>.254 | -39.7<br>-42.7 | .516<br>.517 | -122.5<br>-128.2 |
|                    |              |                 |              |                |              |                |              |                  |

**NEC** 2SC5004

#### [MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.