Small switching (30V, 2A) 2SK2103

Features

1) Low on-resistance.
2) Fast switching speed.
3) Wide SOA (safe operating area).
4) Low-voltage drive (4V).
5) Easily designed drive circuits.
6) Easy to use in parallel.

- Structure

Silicon N-channel
MOSFET

External dimensions (Units: mm)

ROHM : MPT3
EIAJ:SC-62
Abbreviated symbol: KA
(1) Gate
(2) Drain
(3) Source
-Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Limits	Unit
Drain-source voltage		Voss	30	V
Gate-source voltage		Vass	± 20	V
Drain current	Continuous	1 D	2	A
	Pulsed	lop* ${ }^{\text {c }}$	8	A
Reverse drain current	Continuous	lon	2	A
	Pulsed	ldar ${ }^{* 1}$	8	A
Total power dissipation		Po	$\frac{0.5}{2}$	W
Channel temperature		Tch	150	${ }^{\circ} \mathrm{C}$
Storage temperature		Tstg	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

$* 1 \mathrm{Pw} \leqq 10 \mu \mathrm{~s}$, Duty cycle $\leqq 1 \% * 2$ When mounted on a $40 \times 40 \times 0.7 \mathrm{~mm}$ alumina board.

Packaging specifications

Type	Package	Taping
	Code	T100
	Basic ordering unit (pieces)	1000
2SK2103		0

-Electrical characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions
Gate-source leakage	IGSS	-	-	± 100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
Drain-source breakdown voltage	$V_{\text {(BR) }{ }_{\text {dSS }}}$	30	-	-	V	$\mathrm{ld}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}$
Zero gate voltage drain current	loss	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{Ds}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0 \mathrm{~V}$
Gate threshold voltage	$V_{\text {GS (th) }}$	1.0	-	2.5	V	$\mathrm{Vos}=10 \mathrm{~V}, \mathrm{lo}=1 \mathrm{~mA}$
Static drain-source on-state resistance	Ros (on)	-	0.25	0.4	Ω	$\mathrm{ID}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
		-	0.38	0.6		$\mathrm{ID}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=4 \mathrm{~V}$
Forward transfer admittance	$\left\|Y_{i s}\right\|^{*}$	1.0	-	-	S	$\mathrm{ID}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$
Input capacitance	Ciss	-	230	-	pF	$\begin{aligned} & \mathrm{VDS}=10 \mathrm{~V} \\ & \mathrm{VGS}=0 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
Output capacitance	Coss	-	120	-	pF	
Reverse transfer capacitance	Crss	-	60	-	pF	
Turn-on delay time	td (on)	-	10	-	ns	$\mathrm{ID}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{D}} \doteqdot 15 \mathrm{~V}$
Rise time	tr_{r}	-	25	-	ns	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$
Turn-off delay time	to (oft)	-	60	-	ns	$R \mathrm{~L}=15 \Omega$
Fall time	t	-	60	-	ns	$\mathrm{R}_{\mathrm{G}}=10 \Omega$
Reverse recovery time	trr	-	70	-	ns	$\mathrm{log}=2 \mathrm{~A}, \mathrm{~V}_{\text {GS }}=0 \mathrm{~V}, \mathrm{di} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s}$

$* P w \leqq 300 \mu \mathrm{~s}$, Duty cycle $\leqq 1 \%$

Electrical characteristic curves

Fig. 1 Maximum safe operating area

Fig. 2 Typical output characteristics

Fig. 3 Typical transfer characteristics

Fig. 4 Gate threshold voltage vs. channel temperature

Fig. 5 Static drain-source on-state resistance vs. drain current

Fig. 6 Static drain-source on-state resistance vs. drain current (II)

GATE-SOURCE VOLTAGE: $\mathrm{V}_{\mathrm{GS}}(\mathrm{V})$
Fig. 7 Static drain-source on-state resistance vs. gate-source voltage

Fig. 8 Static drain-source on-state resistance vs. channel temperature

Fig. 11 Reverse drain current vs.
source-drain voltage (II)

Fig. 9 Forward transfer admittance vs. drain current

Fig. 10 Reverse drain current vs. source-drain voltage (I)

DRAIN-SOURCE VOLTAGE : Vos (V)
Fig. 12 Typical capacitance vs. drain-source voltage

Fig. 13 Switching characteristics (See Figurse 15 and 16 for the measurement circuit and resultant waveforms)

- Switching characteristics measurement circuit

Fig. 15 Switching time measurement circuit

Fig. 14 Normalized transient thermal resistance vs. pulse width

Fig. 16 Switching time waveforms

