

NPN SILICON RF TRANSISTOR (WITH 2 ELEMENTS) IN A 6-PIN LEAD-LESS MINIMOLD (M16, 1208 PKG)

FEATURES

- Built-in low phase distortion transistor suited for OSC applications $f_T = 9.0 \text{ GHz TYP.}, |S_{21e}|^2 = 7.5 \text{ dB TYP.} @ \text{V}_{CE} = 1 \text{ V}, \text{ Ic} = 10 \text{ mA}, \text{ f} = 2 \text{ GHz}$ NF = 1.3 dB TYP. @ VcE = 1 V, Ic = 3 mA, f = 2 GHz
- Built-in 2 transistors (2 × NE687)
- 6-pin lead-less minimold (M16, 1208 PKG)

BUILT-IN TRANSISTORS

	Q1, Q2
3-pin thin-type ultra super minimold part No.	NE687

<R> ORDERING INFORMATION

Part Number	Order Number	Package	Quantity	Supplying Form
μPA828TD	μΡΑ828TD-A	6-pin lead-less minimold	50 pcs (Non reel)	8 mm wide embossed taping
μΡΑ828TD-T3	μΡΑ828TD-T3-A	(M16, 1208 PKG) (Pb-Free)	10 kpcs/reel	 Pin 1 (Q1 Collector), Pin 6 (Q1 Base) face the perforation side of the tape

Remark To order evaluation samples, contact your nearby sales office. The unit sample quantity is 50 pcs.

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Document No. PU10402EJ03V0DS (3rd edition) Date Published February 2008 NS

The mark <R> shows major revised points.

The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

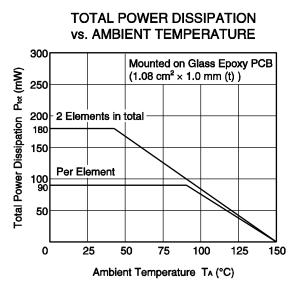
ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

Parameter	Symbol	Ratings	Unit
Collector to Base Voltage	Vсво	5.0	V
Collector to Emitter Voltage	Vceo	3.0	V
Emitter to Base Voltage	Vево	2	V
Collector Current	lc	30	mA
Total Power Dissipation	Ptot Note	90 in 1 element	
		180 in 2 elements	
Junction Temperature	Tj	150 °	
Storage Temperature	Tstg	–65 to +150 °C	

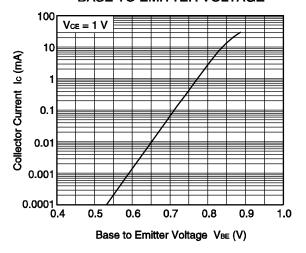
Note Mounted on 1.08 $\text{cm}^2 \times 1.0 \text{ mm}$ (t) glass epoxy PCB

ELECTRICAL CHARACTERISTICS (T_A = +25°C)

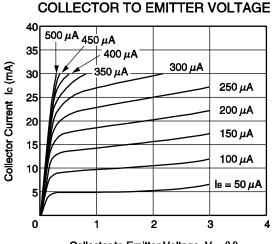
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
DC Characterstics						
Collector Cut-off Current	Ісво	Vсв = 5 V, IE = 0 mA	-	-	100	nA
Emitter Cut-off Current	Іево	VEB = 1 V, Ic = 0 mA	-	-	100	nA
DC Current Gain	hfe Note 1	Vce = 2 V, Ic = 20 mA	70	-	140	_
RF Characterstics						
Gain Bandwidth Product (1)	fт	Vce = 1 V, Ic = 10 mA, f = 2 GHz	7.0	9.0	-	GHz
Gain Bandwidth Product (2)	fт	Vce = 2 V, Ic = 20 mA, f = 2 GHz	9.0	11.0	-	GHz
Insertion Power Gain (1)	S _{21e} ²	Vce = 1 V, Ic = 10 mA, f = 2 GHz	6.0	7.5	-	dB
Insertion Power Gain (2)	S _{21e} ²	Vce = 2 V, Ic = 20 mA, f = 2 GHz	7.0	8.5	-	dB
Noise Figure (1)	NF	$V_{CE} = 1 \text{ V}, \text{ Ic} = 3 \text{ mA}, \text{ f} = 2 \text{ GHz},$ $Z_S = Z_{opt}$	_	1.3	2.0	dB
Noise Figure (2)	NF	$V_{CE} = 2 V$, $I_C = 3 mA$, $f = 2 GHz$, $Z_S = Z_{opt}$	-	1.3	2.0	dB
Reverse Transfer Capacitance	Cre Note 2	Vсв = 2 V, IE = 0 mA, f = 1 MHz	-	0.4	0.8	pF
hFE Ratio	hfe1/hfe2	$V_{CE} = 2 V$, $I_C = 20 mA$, h_{FE1} : Smaller value of Q1 and Q2, h_{FE2} : Larger value of Q1 and Q2	0.85	-	-	_

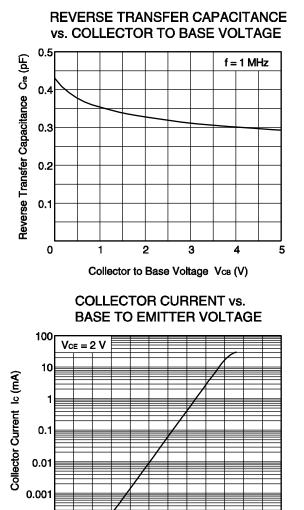

Notes 1. Pulse measurement: PW \leq 350 $\mu s,$ Duty Cycle \leq 2%

2. Collector to base capacitance when the emitter grounded.


hfe CLASSIFICATION

Rank	FB		
Marking	kL		
hfe Value	70 to 140		


<R> TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)

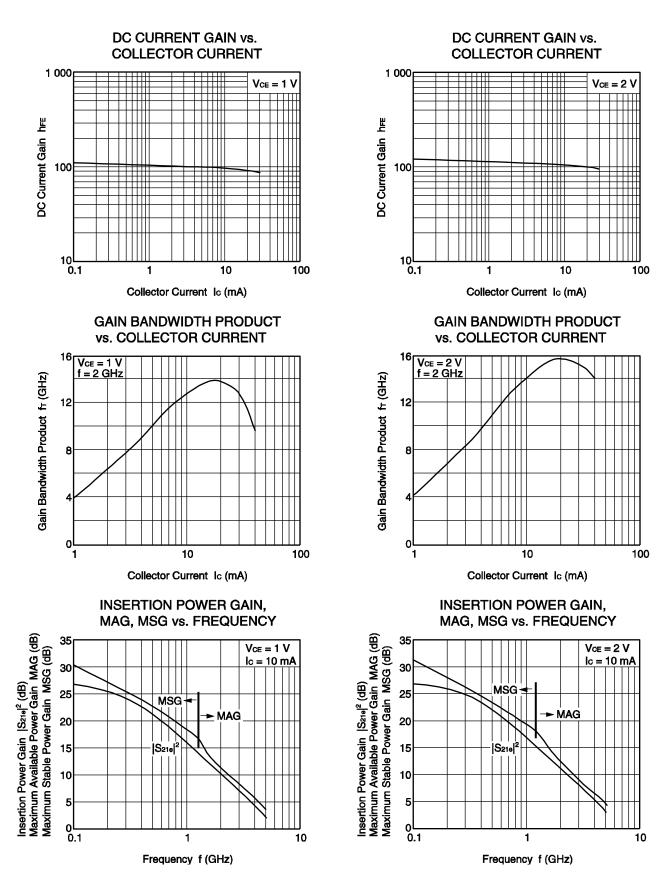


COLLECTOR CURRENT vs.

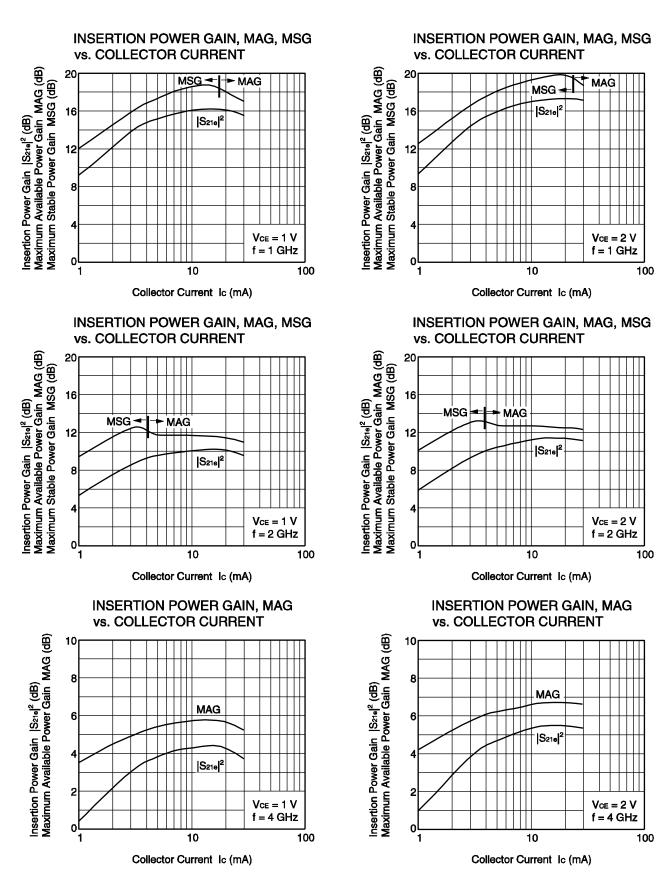
Remark The graphs indicate nominal characteristics.

0.7

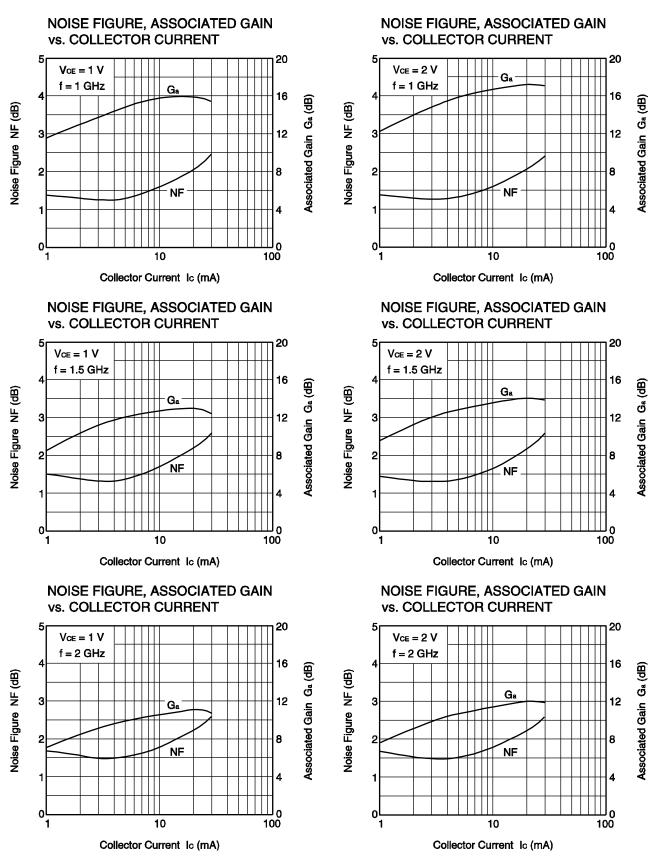
0.6


0.8

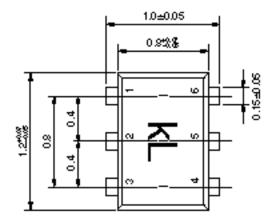
0.9

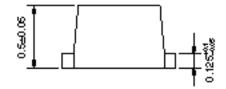

1.0

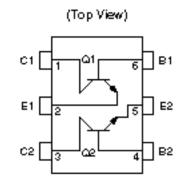
0.0001 0.4


0.5

Remark The graphs indicate nominal characteristics.


Remark The graphs indicate nominal characteristics.




Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

6-PIN LEAD-LESS MINIMOLD (M16, 1208 PKG) (UNIT: mm)

PIN CONNECTIONS

- 1. Collector (Q1)
- 2. Emitter (Q1)
- 3. Collector (C2)
- 4. Base (Q2)
- 5. Emitter (Q2)
- 6. Base (Q1)