Advance Information

N-Channel 20 V Power MOSFET Schottky 1.0 A Barrier Rectifier ChipFET[™] Package

Features

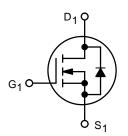
- New Leadless, ChipFET Package Increases Temperature Dissipation
- Increased R_{DS(on)} Performance
- Ultra Low VF

Applications

• Designed for Buck Converter, Buck–Boost Synchronous Rectification, Load Management in Battery Packs, Chargers, Cell Phones and the Portable Products

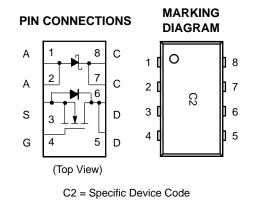
MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

			-	
Rating	Symbol	5 secs	Steady State	Unit
Drain–Source Voltage	V _{DS}	2	0	V
Gate-Source Voltage	V _{GS}	±	12	V
Continuous Drain Current $(T_J = 150^{\circ}C)$ (Note 1) $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	Ι _D	±4.2 ±3.0	±3.1 ±2.2	A
Pulsed Drain Current	I _{DM}	±10		А
Continuous Source Current (Diode Conduction) (Note 1)	I _S	1.8	0.9	A
$\begin{array}{l} \mbox{Maximum Power Dissipation} \\ (\mbox{Note 1}) \\ T_A = 25^\circ C & (\mbox{FET}) \\ T_A = 85^\circ C & (\mbox{FET}) \\ T_A = 25^\circ C & (\mbox{Schottky}) \\ T_A = 85^\circ C & (\mbox{Schottky}) \\ \end{array}$	P _D	2.1 1.1 1.3 0.68	1.1 0.6 –	W
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150		°C
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	ΤL	26	60	°C


1. Surface Mounted on 1" x 1" FR4 Board.

ON Semiconductor®

http://onsemi.com


 $\begin{array}{l} {\sf MOSFET} \\ {\sf 20 \; VOLTS, \; N-CHANNEL} \\ {\sf R}_{{\sf DS}({\sf on})} = 75 \; {\sf m}\Omega \; @ \; {\sf V}_{{\sf gs}} = 4.5 \; {\sf V} \\ {\sf R}_{{\sf DS}({\sf on})} = 143 \; {\sf m}\Omega \; @ \; {\sf V}_{{\sf gs}} = 2.5 \; {\sf V} \\ \; {\sf SCHOTTKY} \\ {\sf 1.0 \; {\sf AMPS}, \; 20 \; {\sf VOLTS} \end{array}$

N–Channel MOSFET

ORDERING INFORMATION

Device	Package	Shipping
NTHD4N02FT1	ChipFET	3000/Tape & Reel

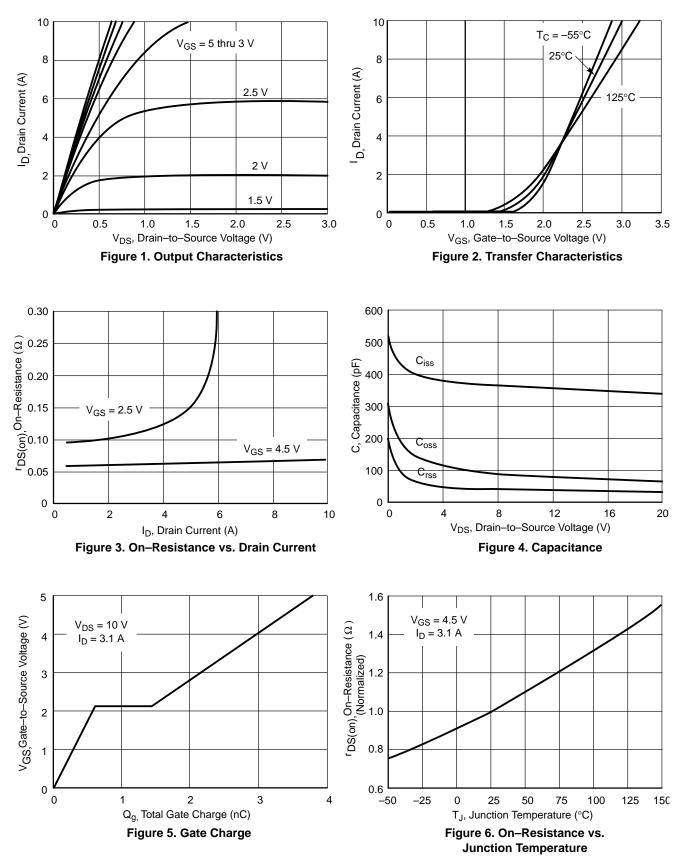
This document contains information on a new product. Specifications and information herein are subject to change without notice.

THERMAL CHARACTERISTICS

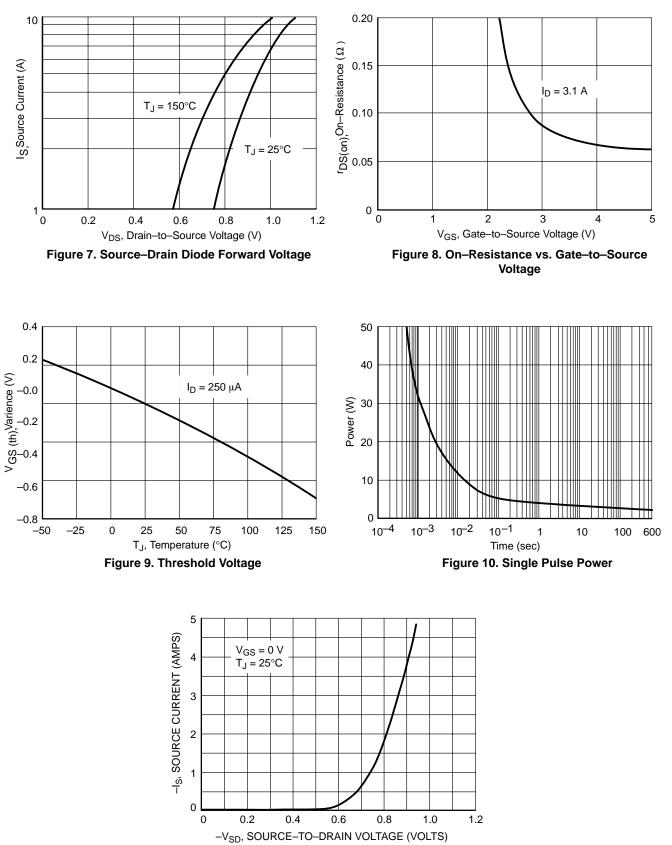
Characteristic	Symbol	Тур	Max	Unit
$\begin{array}{l} \mbox{Maximum Junction-to-Ambient (Note 2)} \\ t \leq 5 \mbox{ sec} \\ \mbox{Steady State} \end{array}$	R _{thJA}	50 90	60 110	°C/W
Maximum Junction-to-Foot (Drain) Steady State	R _{thJF}	30	40	°C/W

ELECTRICAL CHARACTERISTICS (FET) (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit		
tatic								
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, \ I_D = 250 \ \mu A$	0.6	-	-	V		
Gate–Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±12 V	-	-	±100	nA		
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = 16 V, V_{GS} = 0 V	-	-	1.0	μΑ		
		$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85^{\circ}\text{C}$	-	-	5.0			
Drain–Source On–State Resistance (Note 3)	r _{DS(on)}	V_{GS} = 4.5 V, I _D = 3.1 A	-	0.065	0.075	Ω		
		V_{GS} = 2.5 V, I _D = 2.3 A	-	0.115	0.143			
Forward Transconductance (Note 3)	9 _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 5.0 \text{ A}$	-	8.0	-	S		
Diode Forward Voltage (Note 3)	V _{SD}	I _S = 0.9 A, V _{GS} = 0 V	-	0.8	1.2	V		


Input Capacitance	C _{iss}	V _{DS} = 10 Vdc,	-	TBD	-	pF
Output Capacitance	C _{oss}	$V_{GS} = 4.5 V,$	-	TBD	-	
Transfer Capacitance	C _{rss}	f = 1.0 MHz	-	TBD	-	
Total Gate Charge	Qg		-	4.0	6.0	nC
Gate-Source Charge	Q _{gs}	V _{DS} = 10 V, V _{GS} = 4.5 V, I _D = 3.1 A	-	0.6	-	
Gate-Drain Charge	Q _{gd}		-	1.3	-	
Turn–On Delay Time	t _{d(on)}		-	12	18	ns
Rise Time	t _r	V_{DD} = 10 V, R _L = 10 Ω I _D ≅ 1.0 A, V _{GEN} = 4.5 V,	-	35	55	
Turn–Off Delay Time	t _{d(off)}	$R_{\rm G} = 6 \Omega$	-	19	30	
Fall Time	t _f		-	9.0	15	
Source–Drain Reverse Recovery Time	t _{rr}	$I_F = 0.9 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	-	40	80	

ELECTRICAL CHARACTERISTICS (Schottky) ($T_J = 25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Test Condition	Тур	T _j = 25°C	Unit
Maximum Instantaneous Forward Voltage	V _F	$I_F = 0.1 A_{dc}$ $I_F = 1.0 A_{dc}$		0.280 0.365	Vdc
Maximum Instantaneous Reverse	-	$V_R = 10 V_{dc}$ $V_R = 20 V_{dc}$	_	.25 .50	mA

Surface Mounted on 1" x 1" FR4 Board.
 Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Guaranteed by design, not subject to production testing.

FET TYPICAL ELECTRICAL CHARACTERISTICS

FET TYPICAL ELECTRICAL CHARACTERISTICS

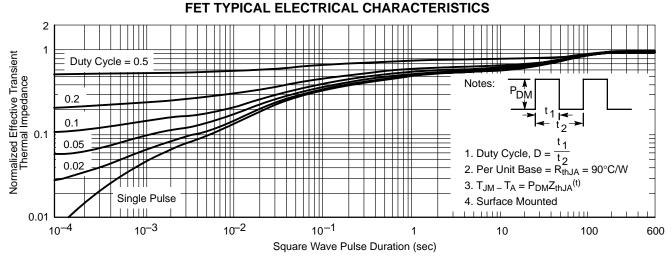
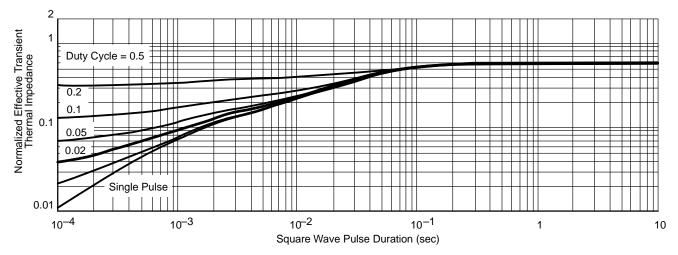
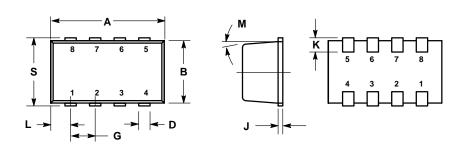
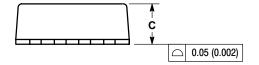


Figure 12. Normalized Thermal Transient Impedance, Junction-to-Ambient


Figure 13. Normalized Thermal Transient Impedance, Junction-to-Foot

<u>Notes</u>

PACKAGE DIMENSIONS

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE.
 LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL AND VERTICAL SHALL NOT EXCEED 0.08 MM.
 DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS.
 NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD SURFACE.
- NO MOLD FLASH ALLOWED ON THE TOP A BOTTOM LEAD SURFACE.
 1206A-01 AND 1206A-02 OBSOLETE. NEW

STAN	DARD IS	1206A-03		
	MILLIN	INC	HES	

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.95	3.10	0.116	0.122
В	1.55	1.70	0.061	0.067
C	1.00	1.10	0.039	0.043
D	0.25	0.35	0.010	0.014
G	0.65	5 BSC	0.025 BSC	
J	0.10	0.20	0.004	0.008
K	0.28	0.42	0.011	0.017
L	0.55	5 BSC	0.02	2 BSC
М	5 ° NOM		5 °	NOM
S	1.80	2.00	0.072	0.080
			-	

STYLE 3: PIN 1. A 2. A 3. S 4. G 5. D 6. D 7. C 8. C

ChipFET is a trademark of Vishay Siliconix

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death wits such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.