

Dual Channel TVS Diode

- ESD / transient protection for data and power lines to IEC61000-4-2 (ESD): ± 15 KV (contact) IEC61000-4-4 (EFT): 40 A (5/50 ns)
- Working voltage: -8 / +14 V
- Low capacitance
- Low reverse current

ESD8V0L2B-03L

Туре	Package	Configuration	Marking
ESD8V0L2B-03L*	TSLP-3-1	2 channel, bi-directional	B3

* Preliminary data

Maximum Ratings at $T_A = 25^{\circ}$ C, unless otherwise specified

Parameter	Symbol	Value	Unit
ESD contact discharge ¹⁾	V _{ESD}	15	kV
Peak pulse current ($t_p = 8 / 20 \ \mu s)^{2}$)	I _{pp}	1	А
Operating temperature range	T _{op}	-55125	°C
Storage temperature	T _{stg}	-65150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ³⁾	R _{thJS}	≤ tbd	K/W

 $^{1}\mathrm{V}_{\mathrm{ESD}}$ according to IEC61000-4-2

 ${}^{2}I_{pp}$ according to IEC61000-4-5

 3 For calculation of $R_{\rm thJA}$ please refer to Application Note Thermal Resistance

Parameter	Symbol	Values		Unit	
		min.	typ.	max.	
Characteristics		-			
Reverse working voltage	V _{RWM}	-8	-	14	V
Breakdown voltage	V _(BR)				
I _(BR) = 1 mA, from pin 1 or 2 to pin 3		14.5	-	-	
$I_{(BR)}$ = 1 mA, from pin 3 to pin 1 or pin 2		8.5	-	-	
Reverse current	I _R	-	< 1	100	nA
$V_{\rm R}$ = 3 V, between all pins					
Clamping voltage	V _{CL}				V
V _{ESD} = +15 kV (contact) ¹⁾		-	26	-	
V _{ESD} = -15 kV (contact) ¹⁾		-	20	-	
Diode capacitance	CT	-	4	7	pF
$V_{\rm R}$ = 0 V, <i>f</i> = 1 MHz, from pin 1 or pin 2 to pin 3					

Electrical Characteristics at $T_A = 25^{\circ}$ C, unless otherwise specified

 $^{1}V_{\text{ESD}}$ according to IEC61000-4-2

Reverse current $I_{R} = f(V_{R})$

 T_A = Parameter

Diode capacitance $C_{T} = f(V_{R})$

f = 1 MHz

Application example ESD8V0L2B-03L

2 channel, bi-directional

Foot Print

For board assembly information please refer to Infineon website "Packages"

Stencil apertures

Marking Layout

Standard Packing

Reel ø180 mm = 15.000 Pieces/Reel

Published by Infineon Technologies AG, 81726 München © Infineon Technologies AG 2006. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.