Power Management Switch Applications

High-Current Switching Applications

- 1.5 V drive

- Low on-resistance

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{On}}=140 \mathrm{~m} \Omega(\max)\left(@ \mathrm{~V}_{\mathrm{GS}}=-1.5 \mathrm{~V}\right) \\
& \mathrm{R}_{\mathrm{on}}=78 \mathrm{~m} \Omega(\max)\left(@ \mathrm{~V}_{\mathrm{GS}}=-1.8 \mathrm{~V}\right) \\
& \mathrm{R}_{\mathrm{on}}=49 \mathrm{~m} \Omega(\max)\left(@ \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}\right) \\
& \mathrm{R}_{\text {on }}=38 \mathrm{~m} \Omega(\max)\left(@ \mathrm{~V}_{\mathrm{GS}}=-4.0 \mathrm{~V}\right)
\end{aligned}
$$

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol $^{c \mid}$	Rating	Unit	
Drain-Source voltage	V_{DS}	-20	V	
Gate-Source voltage	$\mathrm{V}_{\mathrm{GSS}}$	± 8	V	
Drain current	DC	I_{D}	-4.0	A
	Pulse	I_{DP}	-8.0	
Drain power dissipation	P_{D} (Note 1)	800	mW	
	P_{D} (Note 2)	500		
Channel temperature	T_{Ch}	150	${ }^{\circ} \mathrm{C}$	
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$	

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Weight: 6.6 mg (typ.)

Note 1 : Mounted on ceramic board
($25.4 \mathrm{~mm} \times 25.4 \mathrm{~mm} \times 0.8 \mathrm{t}, \mathrm{Cu}$ Pad: $645 \mathrm{~mm}^{2}$)
Note 2 : Mounted on FR4 board
($25.4 \mathrm{~mm} \times 25.4 \mathrm{~mm} \times 1.6 \mathrm{t}, \mathrm{Cu}$ Pad: $645 \mathrm{~mm}^{2}$)

Electrical Characteristics ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Conditio		Min	Typ.	Max	Unit	
Drain-Source breakdown voltage		V (BR) DSS	$\mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$		-20	-	-	V	
		V (BR) DSX	$\mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=+8 \mathrm{~V}$		-12	-	-		
Drain cut-off current		IDSS	$\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		-	-	-10	$\mu \mathrm{A}$	
Gate leakage current		IGSS	$\mathrm{V}_{\mathrm{GS}}= \pm 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		-	-	± 1	$\mu \mathrm{A}$	
Gate threshold voltage		$V_{\text {th }}$	$\mathrm{V}_{\mathrm{DS}}=-3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~mA}$		-0.3	-	-1.0	V	
Forward transfer admittance		$\left\|\mathrm{Y}_{\mathrm{fS}}\right\|$	$\mathrm{V}_{\mathrm{DS}}=-3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.0 \mathrm{~A}$	(Note 3)	6.1	12.1	-	S	
Drain-Source ON-resistance		$\mathrm{R}_{\mathrm{DS}}(\mathrm{ON})$	$\mathrm{I}_{\mathrm{D}}=-3.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=-4.0 \mathrm{~V}$	(Note 3)	-	28	38	$\mathrm{m} \Omega$	
		$\mathrm{I}_{\mathrm{D}}=-2.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$	(Note 3)	-	34	49			
		$\mathrm{I}_{\mathrm{D}}=-1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=-1.8 \mathrm{~V}$	(Note 3)	-	47	78			
		$\mathrm{ID}=-0.3 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=-1.5 \mathrm{~V}$	(Note 3)	-	60	140			
Input capacitance			Ciss	$\begin{aligned} & V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		-	1484	-	pF
Output capacitance			Coss			-	185	-	pF
Reverse transfer capacitance			Crss			-	169	-	pF
Switching time	Turn-on time	$\mathrm{t}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2.0 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \sim-2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=4.7 \Omega \end{aligned}$		-	67	-	ns	
	Turn-off time	$t_{\text {off }}$			-	92	-		

Characteristics	Symbol	Test Co		Min	Typ.	Max	Unit
Total gate charge	Q_{g}	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-16 \mathrm{~V}, \mathrm{IDS}=-4.0 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=-4.0 \mathrm{~V}, \end{aligned}$		-	22.3	-	nC
Gate-Source charge	$Q_{\text {gs }}$			-	14.9	-	
Gate-Drain charge	$Q_{g d}$			-	7.3	-	
Drain-Source forward voltage	V ${ }_{\text {DSF }}$	$\mathrm{I}_{\mathrm{D}}=4.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$	(Note 3)	-	0.8	1.2	V

Note 3: Pulse test

Switching Time Test Circuit

(a) Test Circuit

$V_{D D}=-10 \mathrm{~V}$
$R_{G}=4.7 \Omega$
D.U. $\leqq 1 \%$
$\mathrm{V}_{\mathrm{IN}}: \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}<5 \mathrm{~ns}$
Common Source
$\mathrm{Ta}=25^{\circ} \mathrm{C}$
(b) V_{IN}
(c) Vout

Equivalent Circuit (top view)

Precaution

$V_{\text {th }}$ can be expressed as the voltage between the gate and source when the low operating current value is $I_{D}=-1 m A$ for this product. For normal switching operation, V_{GS} (on) requires a higher voltage than $\mathrm{V}_{\text {th }}$ and V_{GS} (off) requires a lower voltage than $\mathrm{V}_{\text {th }}$. (The relationship can be established as follows: V_{GS} (off) $<\mathrm{V}_{\text {th }}<\mathrm{V}_{\mathrm{GS}}$ (on).)

Be sure to take this into consideration when using the device.

Handling Precaution

When handling individual devices (which are not yet mounted on a circuit board), ensure that the environment is protected against static electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

Drain-Source voltage $V_{D S}(\mathrm{~V})$

